Practical Statistics for Particle Physicists Lecture 1

Harrison B. Prosper
Florida State University

European School of High-Energy Physics
Anjou, France
6 - 19 June, 2012

Outline

- Lecture 1
- Descriptive Statistics
- Probability
- Likelihood
- The Frequentist Approach - 1
- Lecture 2
- The Frequentist Approach - 2
- The Bayesian Approach
- Lecture 3 - Analysis Example

Practicum

I shall place some files (toy data and code) at

http://www.hep.fsu.edu/~harry/ESHEP12

e.g.,
topdiscovery.tar
(already there)
contactinteractions.tar
just download and unpack

Descriptive Statistics

Descriptive Statistics - 1

Definition: A statistic is any function of the data \boldsymbol{X}.
Given a sample $\boldsymbol{X}=x_{1}, x_{2}, \ldots x_{\mathrm{N}}$, it is often of interest to compute statistics such as
the sample average

$$
\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

and the sample variance $S^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}$
In any analysis, it is good practice to study ensemble averages, denoted by $\langle\ldots\rangle$, of relevant statistics

Descriptive Statistics - 2

Ensemble Average

Mean

Error

Bias

Variance

Mean Square Error
$<x>$
μ

$$
\varepsilon=x-\mu
$$

$$
b=<x>-\mu
$$

$$
V=<(x-<x>)^{2}>
$$

$$
\mathrm{MSE}=<(x-\mu)^{2}>
$$

Descriptive Statistics - 3

$$
\begin{aligned}
\mathrm{MSE} & =\left\langle(x-\mu)^{2}\right\rangle \\
& =V+b^{2}
\end{aligned}
$$

Exercise 1: Show this

The MSE is the most widely used measure of closeness of an ensemble of statistics $\{\mathbf{x}\}$ to the true value μ

The root mean square (RMS) is

$$
\mathrm{RMS}=\sqrt{\mathrm{MSE}}
$$

Descriptive Statistics - 4

Consider the ensemble average of the sample variance

$$
\begin{aligned}
<S^{2}> & =<\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}> \\
& =<\frac{1}{N} \sum_{i=1}^{N} x_{i}^{2}-\frac{2}{N} \sum_{i=1}^{N} x_{i} \bar{x}+\frac{1}{N} \sum_{i=1}^{N} \bar{x}^{2}> \\
& =\frac{1}{N} \sum_{i=1}^{N}\left\langle x_{i}^{2}>-<\bar{x}^{2}>\right. \\
& =<x^{2}>-<\bar{x}^{2}>
\end{aligned}
$$

Descriptive Statistics - 5

The ensemble average of the sample variance

$$
\begin{aligned}
<S^{2}> & =<x^{2}>-<\bar{x}^{2}> \\
& =<x^{2}>-\frac{<x^{2}>}{N}-\left(\frac{N-1}{N}\right)<x>^{2} \\
& =V-\frac{V}{N}
\end{aligned}
$$

has a negative bias of $-V / N$

> Exercise 2: Show this

Descriptive Statistics - 6

Now, consider the variance of the sample average

$$
\begin{aligned}
<\Delta \bar{x}^{2}> & =\frac{1}{N^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N}\left\langle\Delta x_{i} \Delta x_{j}\right\rangle \\
& =\frac{1}{N^{2}}\left(\sum_{i=1}^{N}<\Delta x_{i}^{2}>+\sum_{i=1}^{N} \sum_{j \neq i}^{N}<\Delta x_{i} \Delta x_{j}>\right)
\end{aligned}
$$

where

$$
\Delta \bar{x} \equiv \bar{x}-<x>\quad \text { and } \quad \Delta x_{i} \equiv x_{i}-<x>
$$

Descriptive Statistics - 7

Suppose that the data are correlated as follows

$$
<\Delta x_{i} \Delta x_{j}>=\rho V
$$

then

$$
\begin{aligned}
\left\langle\Delta \bar{x}^{2}\right\rangle & =\frac{1}{N^{2}}\left(\sum_{i=1}^{N}\left\langle\Delta x_{i}^{2}\right\rangle+\sum_{i=1}^{N} \sum_{j \neq i}^{N}\left\langle\Delta x_{i} \Delta x_{j}\right\rangle\right) \\
& =\frac{V}{N}(1+(N-1) \rho)
\end{aligned}
$$

Descriptive Statistics - Summary

The sample average is an unbiased estimate of the ensemble average

$$
\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

The sample variance is a biased estimate of the ensemble variance

$$
S^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}
$$

The variance of the sample average decreases like $1 / N$ until we reach a limit imposed

$$
V_{\bar{x}}=\frac{V}{N}[1+(N-1) \rho]
$$

by the degree of correlation in the data

Probability

Probability - 1

Basic Rules

1. $\quad \mathrm{P}(\mathrm{A}) \geq 0$
2. $P(A)=1$
3. $P(A)=0$
if A is true
if A is false

Sum Rule
4. $P(A+B)=P(A)+P(B) \quad$ if $A B$ is false *

Product Rule
5. $\mathrm{P}(\mathrm{AB})=\mathrm{P}(\mathrm{A} \mid \mathrm{B}) \mathrm{P}(\mathrm{B})$ *
$* A+B=A$ or $B, \quad A B=A$ and $B, \quad A \mid B=A$ given that B is true

Probability - 2

By definition, the conditional probability of A given B is

$$
P(A \mid B)=\frac{P(A B)}{P(B)}
$$

$P(\mathrm{~A})$ is the probability of A without restriction.
$P(\mathrm{~A} \mid \mathrm{B})$ is the probability of A when we restrict to the conditions under which B is true.

$$
P(B \mid A)=\frac{P(A B)}{P(A)}
$$

Probability - 3

From
we deduce
Bayes' Theorem:

$$
\begin{aligned}
P(A B) & =P(B \mid A) P(A) \\
& =P(A \mid B) P(B)
\end{aligned}
$$

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}
$$

A

Probability - 4

A and B are mutually exclusive if

$$
P(A B)=0
$$

A and B are exhaustive if

$$
P(A)+P(B)=1
$$

Theorem

$$
P(A+B)=P(A)+P(B)-P(A B)
$$

Exercise 3: Prove theorem

Probability
 Binomial \& Poisson Distributions

Binomial \& Poisson Distributions - 1

A Bernoulli trial has two outcomes:
$S=$ success or $F=$ failure.
Example: Each collision between protons at the LHC is a Bernoulli trial in which something interesting happens (S) or does not (F).

Let $p=P(S)$ be the probability of a success, assumed to be the same at each trial. Since S and F are exhaustive, the probability of a failure is $\boldsymbol{1}-\boldsymbol{p}$. For a given order \boldsymbol{O} of \boldsymbol{n} trails, the probability $\operatorname{Pr}(k, O \mid n)$ of exactly k successes and $n-\boldsymbol{k}$ failures is

$$
\operatorname{Pr}(k, O, n)=p^{k}(1-p)^{n-k}
$$

Binomial \& Poisson Distributions - 2

If the order \boldsymbol{O} of successes and failures is irrelevant, we can eliminate the order from the problem by marginalizing, that is summing over all possible orders

$$
\operatorname{Pr}(k, n)=\sum_{O} \operatorname{Pr}(k, O, n)=\sum_{O} p^{k}(1-p)^{n-k}
$$

This yields the binomial distribution

$$
\operatorname{Binomial}(k, n, p) \equiv\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Sometimes this is written as $k \sim \operatorname{Binomial}(n, p)$, where
" \sim " means "is distributed as"

Binomial \& Poisson Distributions - 3

We can prove that the mean number of successes a is

$$
a=p n . \quad \text { Exercise 4: Prove it }
$$

Suppose that the probability, \boldsymbol{p}, of a success is very small,

then, in the limit $p \rightarrow 0$ and $n \rightarrow \infty$, such that \boldsymbol{a} is constant, $\operatorname{Binomial}(k, n, p) \rightarrow \operatorname{Poisson}(k, a)$.

The Poisson distribution is generally regarded as a good model for a counting experiment
Exercise 5: Show that $\operatorname{Binomial}(k, n, p) \rightarrow \operatorname{Poisson}(k, a)$

Common Distributions and Densities

Uniform (x, a)
$\operatorname{Binomial}(k, n, p)$
Poisson (k, a)
$\operatorname{Gaussian}(x, \mu, \sigma)$
$\operatorname{Chisq}(x, n)$
$\operatorname{Gamma}(x, a, b)$
$\operatorname{Exp}(x, a)$
$1 / a$
$\binom{n}{k} p^{k}(1-p)^{n-k}$
$a^{k} \exp (-a) / k!$
$\exp \left(-(x-\mu)^{2} / 2 \sigma^{2}\right) / \sigma \sqrt{2 \pi}$
$x^{n / 2-1} \exp (-x / 2) / 2^{n / 2} \Gamma(n / 2)$
$x^{b-1} a^{b} \exp (-a x) / \Gamma(b)$
$a \exp (-a x)$

Probability - What is it exactly?

There are at least two interpretations of probability:

1. Degree of belief in, or plausibility of, a proposition Example:
the world will end on December 21, 2012
2. Relative frequency of outcomes in an infinite sequence of identically repeated trials
Example:
trials: proton-proton collisions at the LHC
outcome: a jet in a given rapidity and p_{T} bin

Likelihood

Likelihood - 1

The likelihood function is proportional to the probability, or probability density function (pdf), of observables evaluated at the observed data.

Example:
$p(D \mid d)=\operatorname{Poisson}(D \mid d) \quad$ probability of observables D
$p(17 \mid d)=\operatorname{Poisson}(17 \mid d) \quad$ likelihood of observation $D=17$
$\operatorname{Poisson}(D \mid d)=\exp (-d) d^{D} / D!$

Likelihood - 2

Given the likelihood function we can answer questions such as:

1. How do I estimate a parameter?
2. How do I quantify its accuracy?
3. How do I test an hypothesis?
4. How do I quantify the significance of a result?

Writing down the likelihood function requires:

1. Identifying all that is known, e.g., the data
2. Identifying all that is unknown, e.g., the parameters
3. Constructing a probability model for both

Likelihood - 3

Example: Top Quark Discovery (1995), D0 Results

knowns:

$$
\begin{aligned}
& D=17 \text { events } \\
& B=3.8 \pm 0.6 \text { background events }
\end{aligned}
$$

unknowns:

$$
\begin{array}{ll}
b & \text { expected background count } \\
s & \text { expected signal count } \\
d=b+s & \text { expected event count }
\end{array}
$$

Note: we are uncertain about unknowns, so 17 ± 4.1 is a statement about d, not about the observed count 17 !

Likelihood - 4

The likelihood is a fundamental ingredient in the two most important approaches to inference:

Frequentist

1. Fundamental idea: frequentist principle.
2. Use the likelihood function only.

Bayesian

1. Fundamental idea: all uncertainty can be modeled using probabilities.
2. Use Bayes theorem always.

The Frequentist Approach - 1

The Frequentist Approach

The Frequentist Principle (Neyman, 1937)

Construct statements such that a fraction $f \geq p$ of them will be true over an (infinite) ensemble of statements. The fraction f is called the coverage probability and p is called the confidence level (CL).

Note: The confidence level is a property of the ensemble to which the statements are presumed to belong. In general, the confidence level will change if the ensemble changes.

Neyman's construction of confidence intervals is the classic example of the frequentist principle in action.

The Frequentist Approach Maximum Likelihood

Maximum Likelihood - 1

Example: Top Quark Discovery (1995), D0 Results

$$
\begin{array}{ll}
D & =17 \text { events } \\
B & =3.8 \pm 0.6 \text { events }
\end{array}
$$

Likelihood

$$
\begin{aligned}
p(D \mid s, b) & =\operatorname{Poisson}(D, s+b) \operatorname{Gamma}(k, b, Q+1) \\
& =\frac{(s+b)^{D} e^{-(s+b)}}{D!} \frac{(b k)^{Q} e^{-b k}}{\Gamma(Q+1)}
\end{aligned}
$$

where

$$
\begin{array}{ll}
B=Q / k & Q=(B / \delta B)^{2}=(3.8 / 0.6)^{2}=41.11 \\
\delta B=\sqrt{ } \mathrm{Q} / \mathrm{k} & k=B / \delta B^{2}=3.8 / 0.6^{2}=10.56
\end{array}
$$

Maximum Likelihood - 2

knowns:

$$
\begin{aligned}
& D=17 \text { events } \\
& B=3.8 \pm 0.6 \text { background events }
\end{aligned}
$$

unknowns:
b
s
expected background count expected signal count

Find maximum likelihood estimates (MLE):

$$
\begin{aligned}
& \frac{\partial \ln p(17 \mid s, b)}{\partial s}=\frac{\partial \ln p(17 \mid s, b)}{\partial b}=0 \Rightarrow \hat{s}, \hat{b} \\
& \hat{s}=D-B, \hat{b}=B
\end{aligned}
$$

Maximum Likelihood - 3

The Good

- Maximum likelihood estimates (MLE) are consistent: RMS goes to zero as more and more data are acquired
- If an unbiased estimate for a parameter exists, maximum likelihood will find it
- Given the MLE for s, the MLE for $y=g(s)$ is just $\hat{y}=g(\hat{s})$

The Bad (from a frequentist point of view!)

- In general, MLEs are biased Extra Exercise: Show this

The Ugly

- Correcting for bias, however, can waste data and sometimes yield absurdities

The Frequentist Approach Confidence Intervals

Confidence Intervals - 1

Consider a counting experiment that observes \boldsymbol{D} events with expected signal s and no background. Its likelihood is

$$
p(D \mid s)=\operatorname{Poisson}(D \mid s)
$$

Neyman devised a way to make statements of the form

$$
s \in[l(D), u(D)]
$$

with the guarantee that at least a fraction p of them are true.
s is presumed to be a constant. But, since we don't know s, this criterion needs to hold whatever the value of s.

Confidence Intervals - 2

For each value s find a region in the observation space with probability content $f \geq p=\mathrm{CL}$

Confidence Intervals - 3

- Central Intervals (Neyman)

Has equal probabilities on either side

- Feldman - Cousins Intervals

Contains largest values of the ratios $p(D \mid s) / p(D \mid D)$

- Mode - Centered Intervals

Contains largest probabilities $p(D \mid s)$

By construction, all these intervals satisfy the frequentist principle: coverage probability \geq confidence level

Confidence Intervals - 4

Confidence Intervals - 5

Width of Intervals

Confidence Intervals - 6

Summary

Probability

Probability is an abstraction that must be interpreted.

Likelihood Function

This is the critical ingredient in any non-trivial statistical analysis.

Frequentist Principle
Construct statements such that a given (minimum) fraction of them are true over a given ensemble of statements.

