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I shall place some files (toy data and code) at 

http://www.hep.fsu.edu/~harry/ESHEP12 

e.g., 
 topdiscovery.tar   (already there) 

 contactinteractions.tar 

just download and unpack 
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Definition: A statistic is any function of the data X. 
Given a sample X = x1, x2, … xN, it is often of interest  
to compute statistics such as  

the sample average 

and the sample variance  

In any analysis, it is good practice to study ensemble 
averages, denoted by < … >, of relevant statistics 
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Ensemble Average 

Mean 

Error 

Bias 

Variance 

Mean Square Error 
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  V =< (x− < x >)2 >

  MSE = < (x − µ)2 >
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The MSE is the most widely used measure of closeness of an 
ensemble of statistics {x} to the true value µ  

The root mean square (RMS) is 

Exercise 1: 
Show this 



Consider the ensemble average of the sample variance 
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The ensemble average of the sample variance 

has a negative bias of  –V / N  
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Exercise 2: 
Show this 



Now, consider the variance of the sample average 

where 
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and 



Suppose that the data are correlated as follows 

then 
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The sample average 
is an unbiased estimate 
of the ensemble average 

The sample variance  
is a biased estimate 
of the ensemble variance 

The variance of the sample 
average decreases like 1/N 
until we reach a limit imposed 
by the degree of correlation in the data 
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Vx =

V
N

1+ (N −1)ρ⎡⎣ ⎤⎦
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Basic Rules  
 1.  P(A) ≥ 0     
 2.  P(A) = 1    if A is true 
 3.  P(A) = 0    if A is false 

Sum Rule 
 4.  P(A+B) = P(A) + P(B)  if AB is false * 

Product Rule    
 5.  P(AB) = P(A|B) P(B) *   

*A+B = A or B,   AB = A and B,  A|B = A given that B is true 



P(A | B) = P(AB)
P(B)

By definition, the conditional probability of A given B is 

P(A) is the probability of A without 
restriction.  

P(A|B) is the probability of A when  
we restrict to the conditions under  
which B is true. 

P(B | A) = P(AB)
P(A)
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From 
we deduce 
Bayes’ Theorem: 
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A and B are mutually exclusive if 

   P(AB) = 0 

A and B are exhaustive if 

   P(A) + P(B) = 1 
Theorem 
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Exercise 3: Prove theorem 
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  Pr(k,O,n) = pk (1− p)n− k



If the order O of successes and failures is irrelevant, we can 
eliminate the order from the problem by marginalizing, 
that is summing over all possible orders 

This yields the binomial distribution 

Sometimes this is written as              , where  
   “~” means “is distributed as” 
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Pr(k,n) = Pr(k,O,n)

O
∑ = pk (1− p)n− k

O
∑

Binomial(k,n, p) ≡ k
n( ) pk (1− p)n− k

 
k  Binomial(n, p)
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Exercise 5: Show that Binomial(k, n, p) → Poisson(k, a)  

Exercise 4: Prove it 
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1 / a

k
n( ) pk (1− p)n− k
ak exp(−a) / k!

exp(−(x − µ)2 / 2σ 2 ) /σ 2π
xn /2−1 exp(−x / 2) / 2n /2Γ(n / 2)
xb−1ab exp(−ax) / Γ(b)
aexp(−ax)

Uniform(x,a)
Binomial(k,n, p)
Poisson(k,a)
Gaussian(x,µ,σ )
Chisq(x,n)
Gamma(x,a,b)
Exp(x,a)
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There are at least two interpretations of probability: 

1.  Degree of belief in, or plausibility of, a proposition 
Example: 

 the world will end on December 21, 2012 

2.  Relative frequency of outcomes in an infinite 
sequence of identically repeated trials 

 Example: 
       trials:  proton-proton collisions at the LHC 
       outcome:  a jet in a given rapidity and pT bin 
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The likelihood function is proportional to the probability, or 
probability density function (pdf), of observables evaluated 
at the observed data. 

Example: 

 p(D| d) = Poisson(D |d)  probability of observables D 

 p(17|d) = Poisson(17|d)  likelihood of observation D = 17 

     Poisson(D|d) = exp(-d) dD / D! 



26 

Given the likelihood function we can answer questions such 
as: 

1.  How do I estimate a parameter? 
2.  How do I quantify its accuracy? 
3.  How do I test an hypothesis? 
4.  How do I quantify the significance of a result? 

Writing down the likelihood function requires: 
1.  Identifying all that is known, e.g., the data 
2.  Identifying all that is unknown, e.g., the parameters 
3.  Constructing a probability model for both 
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Example: Top Quark Discovery (1995), D0 Results 

 knowns: 
  D = 17 events   
  B = 3.8 ± 0.6 background events 

 unknowns: 
  b   expected background count 
  s   expected signal count 
  d = b + s  expected event count 

Note: we are uncertain about unknowns, so 17 ± 4.1 is a 
statement about d, not about the observed count 17! 



The likelihood is a fundamental ingredient in the two most 
important approaches to inference: 

 Frequentist 
1.  Fundamental idea: frequentist principle. 
2.  Use the likelihood function only. 

 Bayesian 
1.  Fundamental idea: all uncertainty can be modeled 

using probabilities. 
2.  Use Bayes theorem  always. 
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The Frequentist Principle (Neyman, 1937) 

 Construct statements such that a fraction f  ≥  p of them 
will be true over an (infinite) ensemble of statements. The 
fraction f is called the coverage probability and p is called 
the confidence level (CL). 

Note: The confidence level is a property of the ensemble to 
which the statements are presumed to belong. In general, 
the confidence level will change if the ensemble changes. 

Neyman’s construction of confidence intervals is the classic 
example of the frequentist principle in action. 
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Example: Top Quark  Discovery (1995), D0 Results 
 D  = 17 events 
 B  = 3.8 ± 0.6 events 

Likelihood 

where 
 B  = Q / k 
 δB  = √Q / k  
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Q = (B /δB)2 = (3.8 / 0.6)2 = 41.11
k = B /δB2 = 3.8 / 0.62 = 10.56

p(D | s, b) = Poisson(D, s + b) Gamma(k, b,Q +1)

=
(s + b)D e−(s+b)

D!
(bk)Q e−bk

Γ(Q +1)
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knowns: 
  D = 17 events   
  B = 3.8 ± 0.6 background events 

unknowns: 
  b   expected background count 
  s   expected signal count 

Find maximum likelihood estimates (MLE): 

∂ ln p(17 | s,b)
∂s

=  ∂ ln p(17 | s,b)
∂b

= 0  ⇒  ŝ,  b̂

ŝ = D − B,   b̂ = B
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The Good 
h  Maximum likelihood estimates (MLE) are consistent: 

RMS goes to zero as more and more data are acquired 
h  If an unbiased estimate for a parameter exists, 

maximum likelihood will find it 
h  Given the MLE for s, the MLE for y = g(s) is just  

The Bad (from a frequentist point of view!) 
h  In general, MLEs are biased 

The Ugly 
h  Correcting for bias, however, can waste data and 

sometimes yield absurdities 

ŷ = g(ŝ)

Extra Exercise: Show this 





Consider a counting experiment that observes D events with 
expected signal s and no background. Its likelihood is 

Neyman devised a way to make statements of the form 

with the guarantee that at least a fraction p of them are true. 

s is presumed to be a constant. But, since we don’t know s, 
this criterion needs to hold whatever the value of s. 
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p(D | s) = Poisson(D | s)

s ∈[l(D), u(D)]
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f ≥ CL

For each value s find a region in the observation space with 
probability content f  ≥ p = CL 

l(D)

f = p(D | s)∑
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Central 

Feldman-Cousins 

Mode-Centered 

D ± √D 
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Central 

Feldman-Cousins 

Mode-Centered 

D ± √D 
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Central 

Feldman-Cousins 

Mode-Centered 

D ± √D 
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Probability 
Probability is an abstraction that must be interpreted.  

Likelihood Function 
This is the critical ingredient in any non-trivial statistical 

analysis. 

Frequentist Principle 
Construct statements such that a given (minimum) 

fraction of them are true over a given ensemble of 
statements. 


