Practical Statistics for Particle Physicists Lecture 1

Harrison B. Prosper Florida State University

European School of High-Energy Physics Anjou, France 6 – 19 June, 2012

Outline

- Lecture 1
 - Descriptive Statistics
 - Probability
 - Likelihood
 - The Frequentist Approach 1
- Lecture 2
 - The Frequentist Approach 2
 - The Bayesian Approach
- Lecture 3 Analysis Example

Practicum

I shall place some files (toy data and code) at

http://www.hep.fsu.edu/~harry/ESHEP12

e.g.,

topdiscovery.tar

(already there)

contactinteractions.tar

just download and unpack

Definition: A **statistic** is any function of the data *X*. Given a sample $X = x_1, x_2, ..., x_N$, it is often of interest to compute statistics such as

the sample average

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

and the sample variance

$$S^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \overline{x})^{2}$$

In any analysis, it is good practice to study **ensemble averages**, denoted by < ... >, of relevant statistics

Ensemble Average	< <i>x</i> >
Mean	μ
Error	$\varepsilon = x - \mu$
Bias	$b = < x > -\mu$
Variance	$V = <(x - < x >)^2 >$
Mean Square Error	$MSE = <(x - \mu)^2 >$

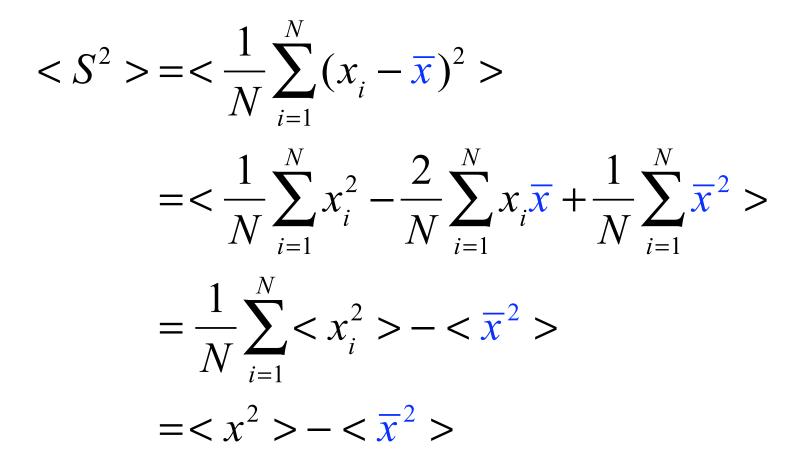
$$MSE = \langle (x - \mu)^2 \rangle$$
$$= V + b^2$$

The **MSE** is the most widely used measure of **closeness** of an ensemble of statistics $\{x\}$ to the **true value** μ

The root mean square (RMS) is

$$RMS = \sqrt{MSE}$$

Consider the *ensemble* average of the *sample* variance



The ensemble average of the sample variance

$$\langle S^{2} \rangle = \langle x^{2} \rangle - \langle \overline{x}^{2} \rangle$$
$$= \langle x^{2} \rangle - \frac{\langle x^{2} \rangle}{N} - \left(\frac{N-1}{N}\right) \langle x \rangle^{2}$$
$$= V - \frac{V}{N}$$

has a negative bias of -V/N

Exercise 2: Show this

Now, consider the variance of the sample average

$$<\Delta \overline{x}^{2} > = \frac{1}{N^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N} <\Delta x_{i} \Delta x_{j} >$$

$$= \frac{1}{N^{2}} \left(\sum_{i=1}^{N} <\Delta x_{i}^{2} > + \sum_{i=1}^{N} \sum_{j\neq i}^{N} <\Delta x_{i} \Delta x_{j} > \right)$$
where

where

$$\Delta \overline{x} \equiv \overline{x} - \langle x \rangle$$
 and $\Delta x_i \equiv x_i - \langle x \rangle$

Suppose that the data are correlated as follows

$$<\Delta x_i \Delta x_j > = \rho V$$

then

$$<\Delta \overline{x}^{2} > = \frac{1}{N^{2}} \left(\sum_{i=1}^{N} <\Delta x_{i}^{2} > + \sum_{i=1}^{N} \sum_{j\neq i}^{N} <\Delta x_{i} \Delta x_{j} > \right)$$
$$= \frac{V}{N} \left(1 + (N-1)\rho \right)$$

Descriptive Statistics – Summary

The **sample average** is an unbiased estimate of the ensemble average

The **sample variance** is a biased estimate of the ensemble variance

The variance of the sample average decreases like 1/Nuntil we reach a limit imposed by the degree of correlation in the data

$$V_{\overline{x}} = \frac{V}{N} \Big[1 + (N-1)\rho \Big]$$

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$S^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \overline{x})^{2}$$

Basic Rules

1.
$$P(A) \ge 0$$

2.
$$P(A) = 1$$
if A is true3. $P(A) = 0$ if A is false

Sum Rule

4.
$$P(A+B) = P(A) + P(B)$$

if AB is false *

Product Rule

5. P(AB) = P(A|B) P(B) *

*A+B = A or B, AB = A and B, A|B = A given that B is true

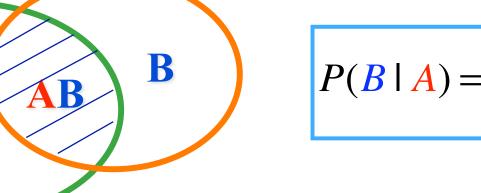
By definition, the **conditional probability** of A given B is

$$P(\mathbf{A} \mid \mathbf{B}) = \frac{P(\mathbf{A}\mathbf{B})}{P(\mathbf{B})}$$

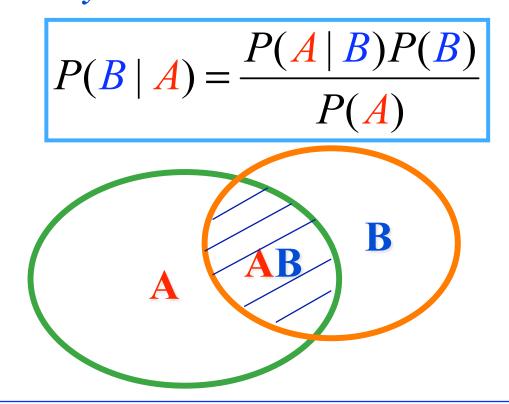
P(**A**) is the probability of A *without restriction*.

P(A|B) is the probability of A when we *restrict* to the conditions under which B is true.

 $\frac{P(AB)}{P(A)}$



From we deduce *Bayes' Theorem:* P(AB) = P(B | A)P(A)= P(A | B)P(B)



A and B are mutually exclusive if

P(AB) = 0

A and B are exhaustive if

$$P(\mathbf{A}) + P(\mathbf{B}) = 1$$

Theorem

$$P(\mathbf{A} + \mathbf{B}) = P(\mathbf{A}) + P(\mathbf{B}) - P(\mathbf{AB})$$

Exercise 3: Prove theorem

Probability Binomial & Poisson Distributions

Binomial & Poisson Distributions – 1

A Bernoulli trial has two outcomes:

S = success or F = failure.

Example: Each collision between protons at the LHC is a Bernoulli trial in which something interesting happens (S) or does not (F).

$$\Pr(k, O, n) = p^k (1-p)^{n-k}$$

Binomial & Poisson Distributions – 2

If the order *O* of successes and failures is irrelevant, we can eliminate the order from the problem by *marginalizing*, that is summing over all possible orders

$$Pr(k,n) = \sum_{O} Pr(k,O,n) = \sum_{O} p^{k} (1-p)^{n-k}$$

This yields the **binomial distribution**

Binomial
$$(k,n,p) \equiv \binom{n}{k} p^k (1-p)^{n-k}$$

Sometimes this is written as $k \sim \text{Binomial}(n, p)$, where "~" means "is distributed as"

Binomial & Poisson Distributions – 3

We can prove that the mean number of successes a is

a = p n. **Exercise 4**: Prove it

Suppose that the probability, *p*, of a success is very small,

then, in the limit $p \to 0$ and $n \to \infty$, such that *a* is *constant*, **Binomial**(*k*, *n*, *p*) \to **Poisson**(*k*, *a*).

The Poisson distribution is generally regarded as a good model for a **counting experiment**

Exercise 5: Show that $Binomial(k, n, p) \rightarrow Poisson(k, a)$

Common Distributions and Densities

Uniform(x,a)Binomial(k,n,p)Poisson(k,a)Gaussian (x,μ,σ) Chisq(x,n)Gamma(x,a,b)Exp(x,a) $\frac{1}{a}$ $\binom{n}{k}p^{k}(1-p)^{n-k}$ $a^{k}\exp(-a)/k!$ $\exp(-(x-\mu)^{2}/2\sigma^{2})/\sigma\sqrt{2\pi}$ $x^{n/2-1}\exp(-x/2)/2^{n/2}\Gamma(n/2)$ $x^{b-1}a^{b}\exp(-ax)/\Gamma(b)$ $a\exp(-ax)$

Probability – What is it exactly?

There are *at least* two interpretations of probability:

 Degree of belief in, or plausibility of, a proposition Example:

the world will end on December 21, 2012

2. Relative frequency of outcomes in an *infinite* sequence of *identically repeated* trials
 Example:

trials:proton-proton collisions at the LHCoutcome:a jet in a given rapidity and p_T bin

The *likelihood function* is proportional to the probability, or probability density function (**pdf**), of observables evaluated at the observed data.

Example:

p(D|d) = Poisson(D|d) probability of observables D

p(17|d) = Poisson(17|d) *likelihood* of observation D = 17

 $Poisson(D|d) = exp(-d) d^D / D!$

Given the likelihood function we can answer questions such as:

- 1. How do I estimate a parameter?
- 2. How do I quantify its accuracy?
- 3. How do I test an hypothesis?
- 4. How do I quantify the significance of a result?

Writing down the likelihood function requires:

- 1. Identifying all that is *known*, e.g., the data
- 2. Identifying all that is *unknown*, e.g., the parameters
- 3. Constructing a probability model *for both*

Example: Top Quark Discovery (1995), D0 Results

knowns:

D = 17 events $B = 3.8 \pm 0.6$ background events

unknowns:

b	expected background count
S	expected signal count
d = b + s	expected event count

Note: we are uncertain about *unknowns*, so 17 ± 4.1 is a statement about *d*, *not about the observed count* 17!

The likelihood is a fundamental ingredient in the two most important approaches to inference:

Frequentist

- 1. Fundamental idea: frequentist principle.
- 2. Use the likelihood function *only*.

Bayesian

- 1. Fundamental idea: *all* uncertainty can be modeled using probabilities.
- 2. Use Bayes theorem *always*.

The Frequentist Approach – 1

The Frequentist Approach

The Frequentist Principle (Neyman, 1937)

Construct statements such that a fraction $f \ge p$ of them will be true over an (infinite) ensemble of statements. The fraction f is called the *coverage probability* and p is called the *confidence level* (CL).

Note: The confidence level is a property of the *ensemble* to which the statements are presumed to belong. In general, the confidence level will change if the ensemble changes.

Neyman's construction of *confidence intervals* is the classic example of the frequentist principle in action.

The Frequentist Approach Maximum Likelihood

Maximum Likelihood – 1

Example: Top Quark Discovery (1995), D0 Results

$$D = 17$$
 events

$$B = 3.8 \pm 0.6$$
 events

Likelihood

 $p(D \mid s, b) = \text{Poisson}(D, s + b) \text{ Gamma}(k, b, Q + 1)$ $= \frac{(s + b)^{D} e^{-(s + b)}}{D!} \frac{(bk)^{Q} e^{-bk}}{\Gamma(Q + 1)}$

where

$$B = Q / k \qquad Q = (B / \delta B)^2 = (3.8 / 0.6)^2 = 41.11$$

$$\delta B = \sqrt{Q} / k \qquad k = B / \delta B^2 = 3.8 / 0.6^2 = 10.56$$

Maximum Likelihood – 2

knowns:

D = 17 events $B = 3.8 \pm 0.6 \text{ background events}$ unknowns: $b \qquad \text{expected background count}$ $s \qquad \text{expected signal count}$

Find maximum likelihood estimates (MLE):

$$\frac{\partial \ln p(17 \mid s, b)}{\partial s} = \frac{\partial \ln p(17 \mid s, b)}{\partial b} = 0 \implies \hat{s}, \ \hat{b}$$
$$\hat{s} = D - B, \ \hat{b} = B$$

Maximum Likelihood – 3

The **Good**

- Maximum likelihood estimates (MLE) are **consistent**: RMS goes to zero as more and more data are acquired
- If an unbiased estimate for a parameter exists, maximum likelihood will find it
- Given the MLE for s, the MLE for y = g(s) is just $\hat{y} = g(\hat{s})$

The **Bad** (from a frequentist point of view!)

• In general, MLEs are biased **Extra Exercise**: Show this

The Ugly

• Correcting for bias, however, can waste data and sometimes yield absurdities

The Frequentist Approach Confidence Intervals

Consider a counting experiment that observes **D** events with expected signal *s* and no background. Its likelihood is

 $p(D \mid s) = \text{Poisson}(D \mid s)$

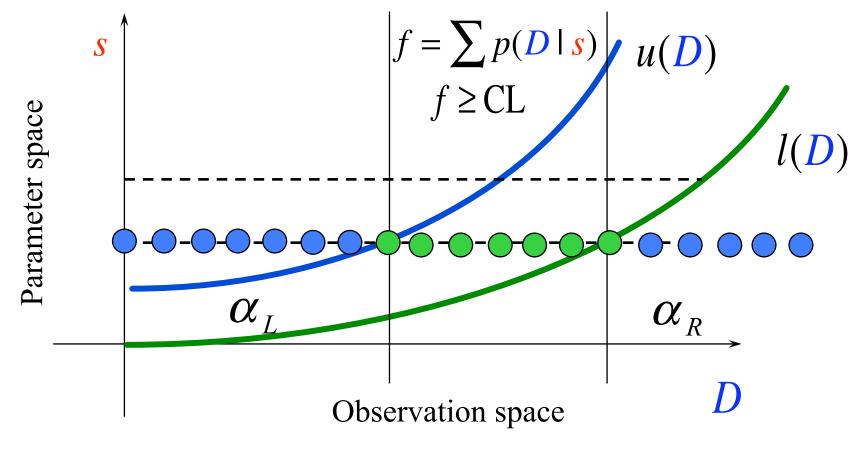
Neyman devised a way to make statements of the form

 $s \in [l(D), u(D)]$

with the guarantee that at least a fraction *p* of them are true.

s is presumed to be a *constant*. But, since we don't know *s*, this criterion needs to hold whatever the value of *s*.

For each value *s* find a region in the *observation space* with probability content $f \ge p = CL$



• Central Intervals (Neyman)

Has equal probabilities on either side

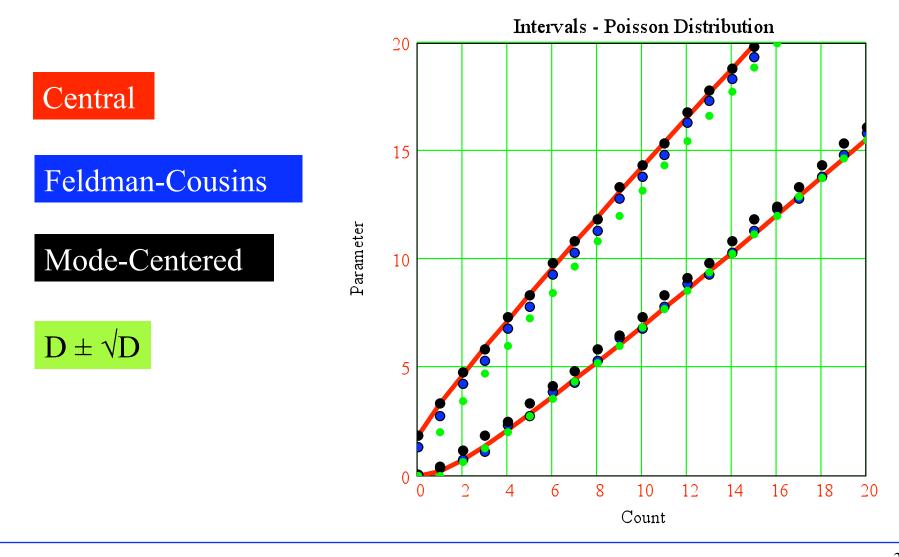
• Feldman – Cousins Intervals

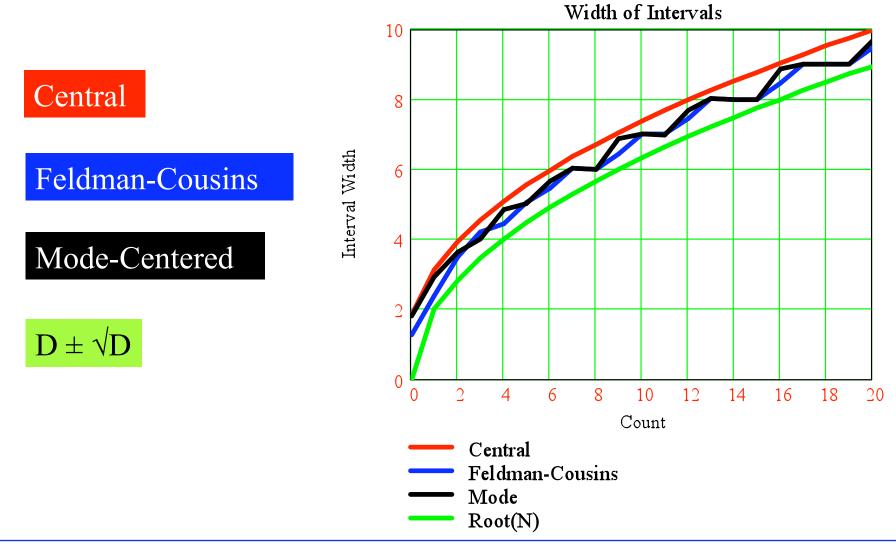
Contains largest values of the ratios p(D|s) / p(D|D)

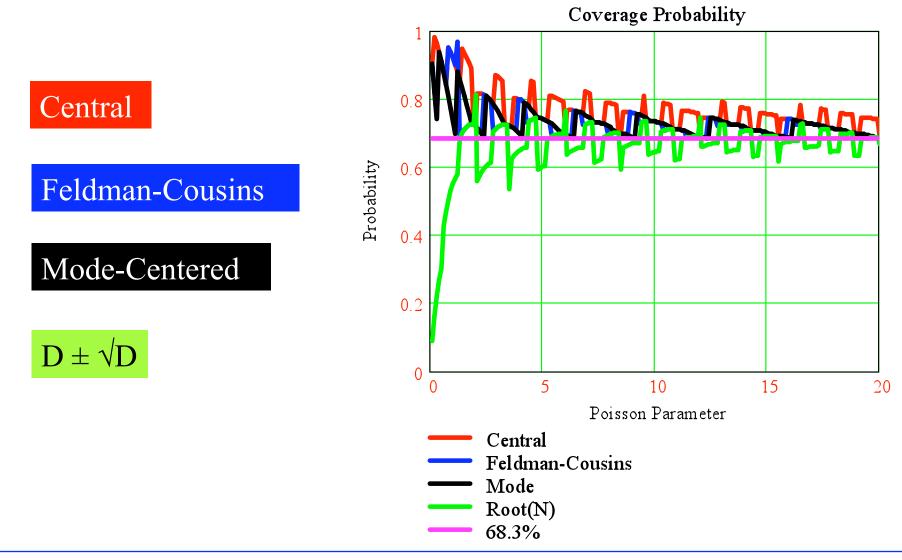
• Mode – Centered Intervals

Contains largest probabilities p(D|s)

By construction, all these intervals satisfy the frequentist principle: *coverage probability* ≥ *confidence level*







Summary

Probability

Probability is an abstraction that must be interpreted.

Likelihood Function

This is the critical ingredient in any non-trivial statistical analysis.

Frequentist Principle

Construct statements such that a given (minimum) fraction of them are true over a given ensemble of statements.