

LHC Injectors Upgrade

New Baseline Design for the H⁰/H⁻ Beam Dump

Wim Weterings TE-ABT

Presenting work from: Bruno Balhan; Elena Benedetto; Jan Borburgh; Chiara Bracco; Melanie Delonca; Robert Froeschl; Marco Garlache; Brennan Goddard; Jan Hansen; Klaus Hanke; Cesare Maglioni; Bettina Mikulec; Antony Newborough; Alexandre Ouzia; Benoit Riffaud; Federico Roncarolo; Laurent Zucalli; Francesca Zocca

The ISSUE:

- Low Z material initially specified for RP considerations;
- SiC was selected;
- Problems with swelling and risk of breaking;
- Estimates are 1-2 years lifetime, before preventive maintenance is needed;
- Goal to have a 4 year operational lifetime to match LHC cycle;

Friday Morning PBU Injection Meeting:

Proposal for external metallic dump, using Titanium, but some potential issues to solve....

PSB Upgrade PSB Upgrade

History of changes

- * **2010** First conceptual study, AlN, BN or Graphite Graphite is retained due to RP and other considerations <u>here</u>, <u>here</u>, <u>here</u> and <u>here</u>.
- * 2011 No pumping is possible for the added degassing from a graphite dump, brazing is problematic → new material study started
- * **2012** Al2O3 : high risk of electrical charging
- * 2013 SiC : baseline retained by reviewers,
 swelling issue to be studied Outcome of Internal Review, INDICO 244116

Possible design concepts

Actual Baseline :

- * Bulk SiC dump inside the magnet (review)
 Under study :
- * Alternative 1) Sliced SiC dump inside the BSW4
- * Alternative 2) outside^{\oplus} metal + sliced SiC dump inside \rightarrow need 5cm behind BSW4
- * Alternative 3) Full metal dump outside[⊕] the magnet
 → need 8-9cm behind BSW4
- $^{\oplus}$ outside = in the space between BSW4 and BHZ11

Alt1) Sliced dump?

Alt3) Full metal dump

- * **Titanium** is the only viable and safe option → need approval from Mag, Vac, RP, BE
- Need a layout change (change in BHZ11 vacuum chamber) to allocate space (it does not need the dump outside of the ring!)
- * 7-9cm needed depending on presence of internal insert
- * A dedicated shielding can be put in place, no problem of lifetime/preventive maintenance
- * If SiC irradiation tests highlight a worse scenario for S%, it's the only viable option

Alt2) SiC sliced + bulk core

Dump design: Integration proposals

- Edge-welded bellow on BSW4 side
- $\Delta z = 54 \text{ mm}$

3/10/2013

EDMS: 1320006

- Edge-welded bellow on BHZ11 chamber
- ∆z = (15+70+15) mm

OPEN QUESTION: which is min Δz for not disturbing \vec{B} ?

 Δz : max distance between downstream surface of red plate and downstream surface of dump

14/10/2013

Status of Ho/H- dump conceptual design -Maglioni Delonca Ouzia Z

Engi

EDMS: 1320006

New Proposal

Solution Comparison

	Baseline: SiC bulk	Alt 1: sliced SiC	Alt 2: sliced Sic + metal	Alt 3: full metal
Swelling - lifetime	1-2y *	1-2y *	~4 y*	√
RP	✔ (with no PM)	√(with no PM)	?	?
Shielding	BSW4	BSW4	BSW4 + difficult	Dedicated
LAYOUT	Baseline / op1	Baseline / op1	Baseline / op1	Op2**
optics / field	<u>الا</u>	√	?	?
VACUUM	V	×	✓	√
BSW4	inside	Inside	Partly outside	outside
Chamber cooling	needed	needed	needed	needed
BHZ protection	—	—	—	—
Monitor support	feasible	feasible	feasible	easy

* Need preventive maintenance. Figure may change after SiC irradiation campaign results.

** Following misalignment measurement, BHZ11 chamber may need to be changed anyway, see PSB H- Injection Tech Meeting, 03/10/13, here

C. Maglioni, M. Delonca, A. Ouzia

PBU Injection Meeting of 29/11/2013; a proposal for <u>new baseline</u> was made:

Full metal dump outside the magnet

Main <u>outstanding issues</u> were identified:

- Integration feasibility study (A.Ouzia, B. Riffaud)
- RP, Activation and intervention scenarios (R. Froeschl)
- dose to downstream BHZ coils (R. Froeschl, A. Newborough)
- Magnet field perturbation (B. Balhan)
- Optic perturbation (E. Benedetto)
- Position of Instrumentation (F. Zocca)
- Vacuum, (J. Hansen, declared OK)

PSB Upgrade Upgrade

Mechanical Design, KSW Magnet

Mechanical Design, Current Baseline

Existing BHZ chamber

Mechanical Design, Proposed Baseline

Modified BHZ chamber

Shielding & Cooling

Dump integration and cooling

ANSYS simulation : Steady-State 2 %

A. Ouzia

Alexandre Ouzia (CERN)	PSB injection dump	November 29 2013 3 / 51	Alexandre Ouzia (CERN)	PSB injection dump	November 29 2013	9 / 51
ANSYS simulation	: Transient 2 %		ANSYS simulation	: to sum up		
25.583						

Figure: Maximum temperature on the whole assembly (dump excepted)

Max T [° (C] 2%	10%
Dump	37.3	137.9
Other	25.5	48.9
Flange	22.5	26.1

ANSYS simulation : One shot accidental case

Titanium dump : radiation damages

A. Ouzia

Alexandre Ouzia (CERN)	PSB injection dump	November 29 2013	33 / 51	Alexandre Ouzia (CERN)	PSB injection dump	November 29 2013	43 / 51
Electric designs of	a dia tiana ala manana a			Then in a coloritor			

Titanium dump : radiation damages

Figure: Stress-Strain Curve evolution with dpa for Ti6Al4V

Titanium selection : conclusions

Conclusions :

Hydrogen embrittlement

 $\alpha\text{-}\mathsf{Ti}$ will become brittle ... but only in a limited volume

 β -Ti does not embrittle

Radiation damages Yield strength ↗ ductility ↘ but is never totally lost other properties do not evolve much

swelling is not a problem

H⁰/H- current monitor: development status

F.Zocca, F.Roncarolo

PSB H- injection meeting – 12th November 2013

In case of external metal dump (1)

 Just outside the magnet (after the end plate) vertical field component B=0.05T

curvature radius : low-energy secondaries = 0.2 mm backscattered = 2 cm, delta-rays = 5 cm

15mm further away (@ dump) vertical B=0.01T :

curvature radius: low-energy secondaries = 1mm backscattered = 9 cm, delta-rays = 24 cm

- If we assume only vertical B-field component, the low-energy secondaries are captured-back, the backscattered may produce cross-talk between the 4 half-plates
- In case of stray horizontal B-field component, we may loose signal (up to 30 % in the worst case) and/or receive secondaries from the dump
 - → Better to reintroduce polarization frames between the dump and the plates !
- The dump-monitor distance (15mm) could be reconsidered (increased) to let the monitor be in a more uniform B-field region

H⁰/H- current monitor in BSW4

<u>GOALS</u> : - monitor the efficiency of the stripping foil (detect degradation and failure) - protect the dump by providing an interlock signal in case of 10% detected beam load

<u>CONCEPT</u>: plates intercepting the H⁰ and H⁻ ions and acting as a Faraday cup for the stripped electrons (stripping & collection)

In case of external metal dump (2)

Positive aspects:

- The polarization frame, being outside the magnet, could be thicker → the E-field more effective → the biasing voltage eventually lower
- Easier integration: it could be easier to mount the monitor to the metal dump and eventually to machine the dump to let more space free for monitor cabling (?)
- The distance between the monitor and the circulating proton beam is slightly increased (unwanted effects reduced)

Cabling:

- Internal: 9 cables (4 signal read-out + 4 test signal/spares + 1 frame bias), cable type → ceramic beads or kapton insulated
- External: request already done for 8 BNC + 1 SHV (per ring)

Intervention locations - Definition

PSB Injection Dumps Scenarios

- 15 locations have been defined
- Number of persons and expected time for each task attributed to a specific location
- Together with dose rates at a given cooling-time, the dose for each intervention is calculated

< E PSB Ti H⁰/H⁻ Dumps - 10/01/2014 - EDMS 1341929

< 臣 ト

990

Robert Froeschl (DGS-RP-AS) PSB Ti H^0/H^-

Dumps - 10/01/2014 - EDMS 1341929

	Outline	Methodology	Resin Dose	WDP	Conclusions	Backup
Conclusions (RP Issues)			Conclus	sions (RP Is	ssues)	

- Improved WDP leading to reduced uncertainties
- Dose rates comparable to the current dose rate levels in PSB
- Collective annual doses of 2-5 mSv
- Titanium and SiC comparable wrt. collective annual dose with a larger variation for Titanium
- Titanium has highest maximum individual dose for *Replacement of BSW4 magnet* scenario
 - Still compatible with 2mSv/person/intervention requirement
- No intervention above ALARA Level 2
- Tasks have to be performed in a way so that goal of maximal 2mSv individual annual dose is reached

・ロト ・ 同ト ・ ヨト ・ ヨト

500

Influence of dump position on Field homogeneity **B. Balhan** using Ti6al4v block, with electric conductivity of 6E5 [S/m]

Dissipated Energy and Forces in Ti block has been evaluated vs position

		0 mm	10 mm
		from end plate	from end plate
Energy (∫B.H/2 dv)	[J]	2.9E-02	7.4E-03
Power loss (∫J.E dv)	[W]	2.2E-01	7.8E-02
x-Lorentz force (∫JxB dv)	[N]	1.8E-03	7.5E-04
y-Lorentz force (∫JxB dv)	[N]	0.0E+00	0.0E+00
z-Lorentz force (∫JxB dv)	[N]	-4.3E-02	-1.3E-03
opera			

- Differences in field homogeneity, using a simplified
 model, without Inconel chamber, compared to having no dump installed:
 - Dump at 0 mm from endplate, no significant differences.
 - Dump at 10 mm from endplate, no influence.
- In order to extract accurate polynomial component, a global calculation with the full geometry and instrumentation is foreseen when design will be frozen.

Mid-plane integrated Field distribution along z axis

Mechanical design

- New design is feasible.
- But modification of BHZ11 vacuum chambers will be required.

Dump Design:

- Cooling can be integrated in the shielding design.
- In this case, no real heating issues are identified.
- Mechanical forces and radiation damage are negligible.

H⁰H⁻ Current Monitor

- New position creates more aperture for PSB circulating beam.
- Distance between dump and screen give minor changes to H⁻ beam trajectory.
- Monitor in uniform B-field, Polarization frame not required.

Radiation & Shielding considerations:

- BHZ resin gets ~0.1-0.2 MGy per year, factor 3-10 worse than for SiC.
- Resin limit is 20 MGy (integrated today ~1MGy), so even 0.2 Mgy/year is acceptable.
- BSW4 magnet replacement (dump change) 5 times lower.
- No ALARA level 3 interventions for any scenario.
- Annual collective dose for Ti or SiC ~2-3 mSv (comparable to current PSB annual collective dose levels for this region)
- Shielding shall be included and fixed to the BSW4 magnet.
- Effect on magnetic Field and Optics:
- Front face of the dump ~10 mm from the end of the magnet field clamp.
- Negligible effect, but still waiting for the multipole expansion (should be no show-stopper).

We propose to approve as new baseline:

- Full metal Ti dump;
- Starting at least 1cm outside the BSW4 magnet;
 - Thus outside the BSW magnetic field;
- Located inside the vacuum chamber;
- With the H⁰H⁻ monitor ~5cm in front of the dump;
 - Thus inside the BSW magnetic field
- Dump Shielding should be at least equivalent ~5cm Pb collar;
- Shielded transport container for BSW4, including dump, is required;
- Modify BHZ11 chambers to create required space;
 - Is not included in Cost to Completion (approx. 150kChF)

