

Quark PDFs at the LHC

Ringailė Plačakytė

QCD Tools for LHC Physics: From 8 to 14 TeV. What is needed and why? 14-15 November, 2013

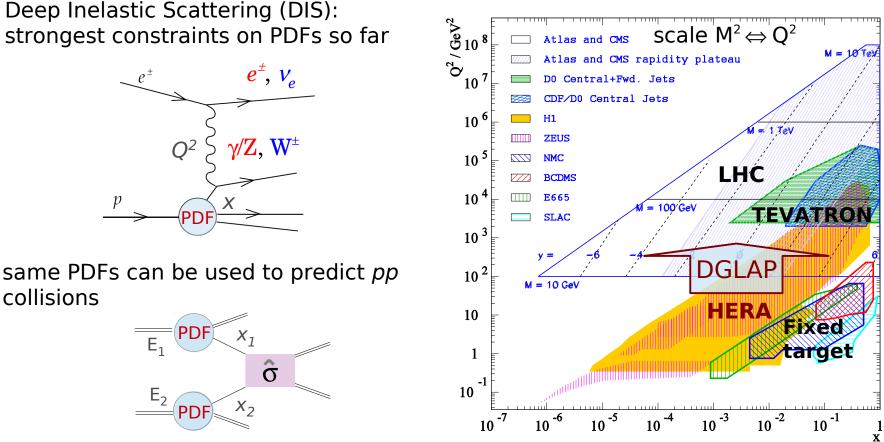
Content:

- Introduction
- LHC measurements constraining quark PDFs
- HERAFitter project and functionality
- Outlook and summary

Ringailė Plačakytė

2

10 PDFs at LHC will be probed/constrained in a different kinematic region: PDFs precision will be improved

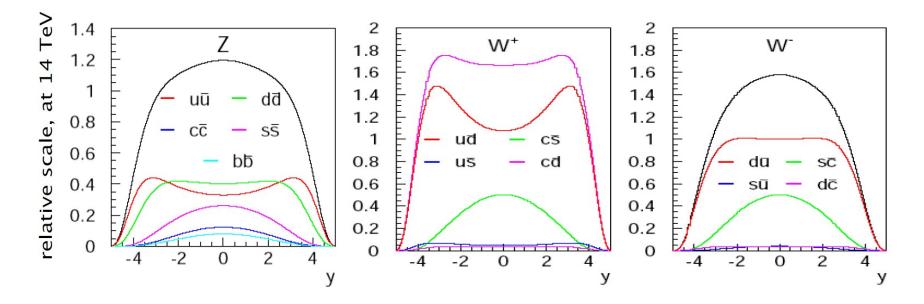

Ringailė Plačakytė

collisions

QCD Tools for the LHC: from 8 to 14 TeV, 14-15 Nov, 2013

Introduction

QCD factorisation: hadronic cross section is a convolution of the PDFs and perturbatively calculable hard-scattering coefficients:


Constraints on the quark PDFs from LHC data

Quark PDF are constrained by LHC data:

Z and W production

- \rightarrow probe different flavour combinations
- \rightarrow sensitivity to d/u ratio and valence
- \rightarrow access to strange and charm quarks in the central rapidity region

 \rightarrow u and d quarks dominate for W, all flavours contribute to Z

Ringailė Plačakytė

Theory and tools for Z,W production at LHC

Main available theory calculations for Z, W production predictions: FEWZ, DYNNLO, RESBOS, MCFM, VRAP, POWHEG, aMC@NLO, ...

- \rightarrow fully differential inclusive NNLO QCD cross sections:
 - FEWZ Y. Li and F. Petriello, Phys.Rev. D86 (2012) 094034, 1208.5967
 - DYNNLO S.Catani, L. Cieri, G. Ferrera, D.de Florian, and M. Grazzini, Phys.Rev.Lett. 103 (2009) 082001, 0903.2120
 - **RESBOS** Balazs and Yuan, Phys. Rev. D (1997) hep.pa.msu.edu/resum (NLO and approx NNLO)

EW corrections @NLO: FEWZ 3.1, SANC D. Bardin et al., arXiv:1207.4400

Many theory calculations are time consuming: using them in PDF fits can be problematic

Tools for theory predictions at LHC

<u>Theory calculations are time consuming \rightarrow using in PDF fits can be problematic</u>

Possible solutions:

- → use Kfactor technique (LO+ NLO Kfactors)
- → using fast interfaces based on separation of perturbative coefficients from PDFs and storing them into look-up tables:

APPLGRID http://applgridhepforge.org, Eur.Phys.J.C66:503-524,2010 interfaces to MCFM J. M. Campbell, R. K. Ellis, Phys.Rev. D60, 113006 (1999), Nucl.Phys.Proc.Suppl. 205, 10 (2010) NLOjet++ Z. Nagy, Phys.Rev.Lett. 88, 122003 (2002) work ongoing to interface DYNNLO, aMC@NLO

FastNLO http://fastNLO.hepforge.org, hep-ph/1208.3641

interfaces to NLOjet++ Z. Nagy, Phys.Rev.Lett. 88, 122003 (2002)

Z and W measurements at LHC

Very successful LHC operation (\sim 30 fb⁻¹ of luminosity in 2010-2012)

Z,W boson production measurements relevant for quark PDFs:

W and Z production cross sections 7TeV, 315 nb⁻¹ (2010) JHEP 1012(2010) 060

W muon charge asymmetry 7TeV, 31 pb⁻¹ (2010) Phys.Lett. B701(2011) 31

W,Z incl cross sections in e and μ channels 7TeV, 36 pb⁻¹ (2010) Phys.Rev. D 85 (2012) 072004

Strange guark density determination Z,W 36 pb⁻¹ (2010), Phys.Rev.Lett.109(2012)012001

High-mass Drell-Yan differential cross sections 7TeV, 4.9 fb⁻¹ (2011), Phys.Lett.B725(2013) 223

W+c production

7TeV, 4.6 fb⁻¹ (2011), ATLAS-CONF-2013-045

LHC Inclusive W and Z production 7TeV, 37 pb⁻¹ (2010) J High En. Phys. 06 (2012) 058

> Z production (μ and e channels) 7TeV, 1 fb⁻¹ (2011), LHCb-CONF-2013-007 (μ), J High En. Phys. 02 (2013) 106 (e)

W electron charge asymmetry

W muon charge asymmetry

7TeV, 4.7 fb⁻¹ (2011) SMP-12-021

W+c differential cross sections

Z rapidity and transverse momentum

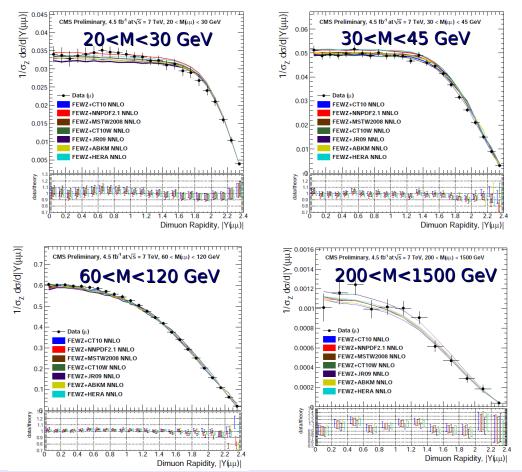
7TeV, 840 pb⁻¹ (2011) Phys.Rev.Lett. 109(2012)111806

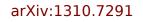
7TeV, 36 pb⁻¹ (2010) Phys.Rev. D 85 (2012) 032002

Drell-Yan differential cross sections at 7 TeV

7TeV, 4.8 fb⁻¹ (2011), SMP-13-003, arXiv:1310.7291

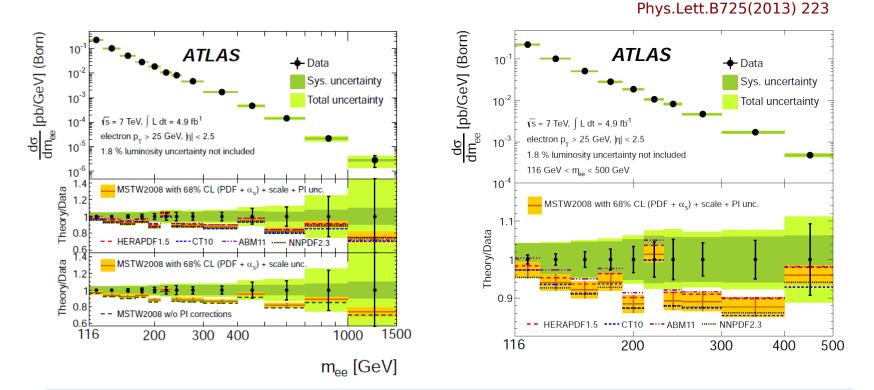
7TeV, 5 fb⁻¹ (2011), SMP-12-002, arXiv:1310:1138


Ringailė Plačakytė


CMS Z double differential measurement

Z boson rapidity y is directly related to the momentum fraction x of the interacting partons: $X_{+} \approx M/\sqrt{s} e^{\pm y}$

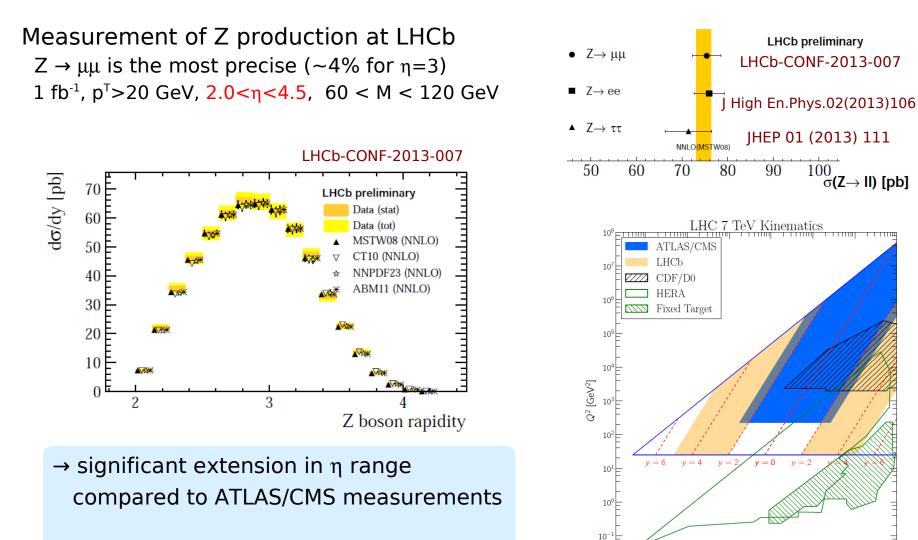
Z rapidity differential and double differential measurement at 7 TeV \rightarrow 4.8 fb⁻¹ e (p^T>20,10 GeV) and 4.5 fb⁻¹ μ (p^T>14,9 GeV) channels combined


- \rightarrow normalised to Z peak
- \rightarrow <2% statistical uncertainty
- → compared to all NNLO (FEWZ) PDFs
- \rightarrow consistent with most of PDFs
- → expect to improve PDFs (quarks and anti-quarks)

Ringailė Plačakytė

QCD Tools for the LHC: from 8 to 14 TeV, 14-15 Nov, 2013

DY differential measurement at 7 TeV → 4.7 fb⁻¹ e (p^T >20 GeV) in 116 < M₂ < 1500 GeV



- \rightarrow compared to different PDFs (FEWZ v3.1 NNLO QCD+NLO EW)
- \rightarrow photon induced (PI) corrections considered
 - \rightarrow similar size as the sum of PDF, as and scale uncertainties together
- \rightarrow potential to constrain high-x quark and antiquark PDFs

Ringailė Plačakytė

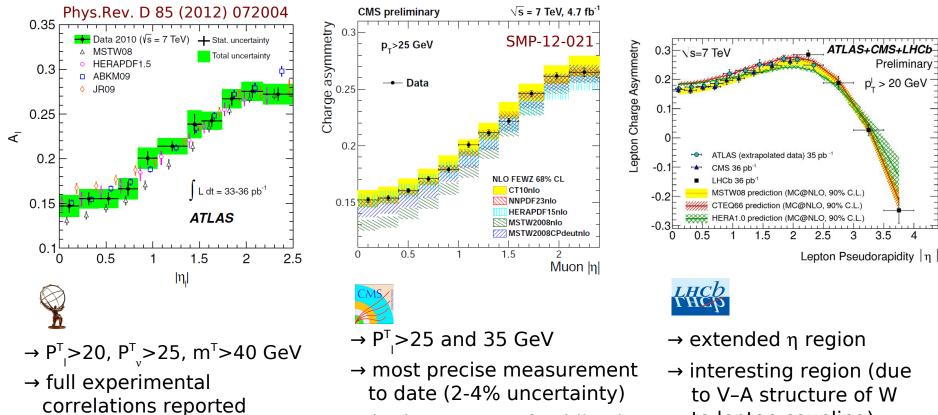
LHCb Z production measurements

 \rightarrow PDF constraints in the low-x region

Ringailė Plačakytė

QCD Tools for the LHC: from 8 to 14 TeV, 14-15 Nov, 2013

10


10

 10^{0}

W lepton charge asymmetry

W lepton asymmetry measurement

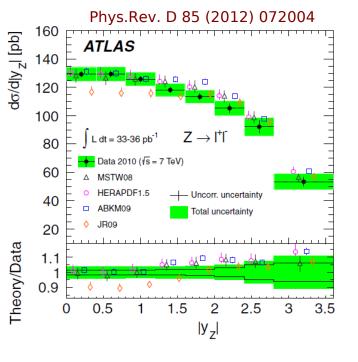
- → overall excess of W^+ over W^- due to presents of two valence *u* quarks in the proton
- → probe valence quarks and PDFs rations (u_v , d_v , d/u, d/u_v , dbar/ubar):

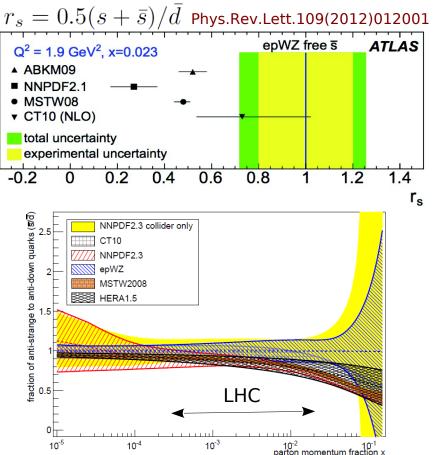
 \rightarrow in the process of publication

QCD Tools for the LHC: from 8 to 14 TeV, 14-15 Nov, 2013

 $\frac{W^+ - W}{W^+ + W^-} \approx \frac{u_v - u_v}{u_v + d_v + 2u_{sea}}$

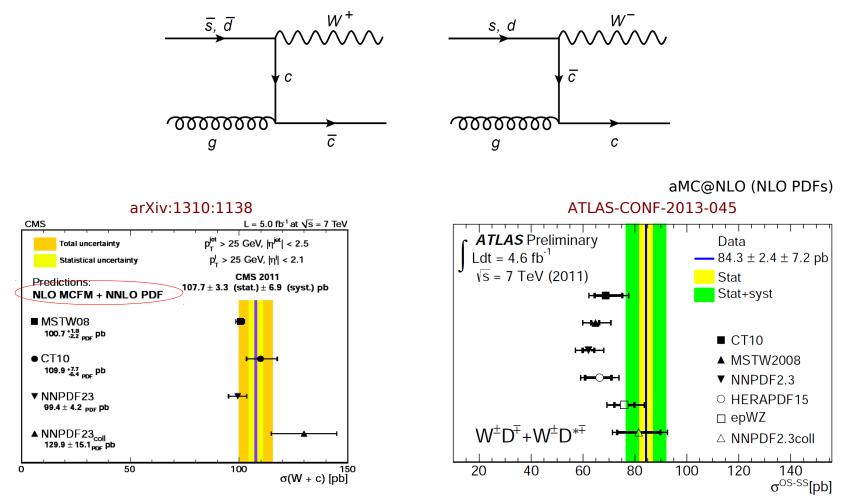
to lepton coupling)


Strange quark density determination


Strange quark density in the proton is still poorly known

- \rightarrow mainly constrains come from fixed target data (NuTeV, HERMES, NOMAD)
- → LHC Z,W and W+charm data sensitive to strange quark density

The differential ATLAS W^{\pm} , Z data used to measure strange quark density


→ data suggests light quark sea at low x favor symmetric

W+charm measurements at LHC

W+charm data \rightarrow direct sensitivity to the strange quark (LO)

→ with CT10 as reference one can see that CMS and ATLAS results are compatible

Ringailė Plačakytė

W+charm measurements at LHC

ATLAS and CMS measurements (both at 7 TeV and 4.6/5 fb⁻¹)

Identification:

- \rightarrow W decays to charged leptons (e or $\mu)$ and neutrino
- \rightarrow the charm quark is tagged by the presence of the c hadron: D⁺(D⁻), D^{*+}(D^{*+}), D0)

: reconstructed tracks $P^{T}>20 \text{ GeV}, |\eta_{1}|<2.5, p^{T}>25 \text{GeV} (M_{T}^{W}<40 \text{GeV})$

: jets identified (secondary vertices), semileptonic decay with well identified μ $P_{|}^{T}>25(35)$ GeV, $|\eta_{|}|<2.1$ ($p_{jet}^{T}>25$ GeV, $|\eta_{jet}|<2.5$)

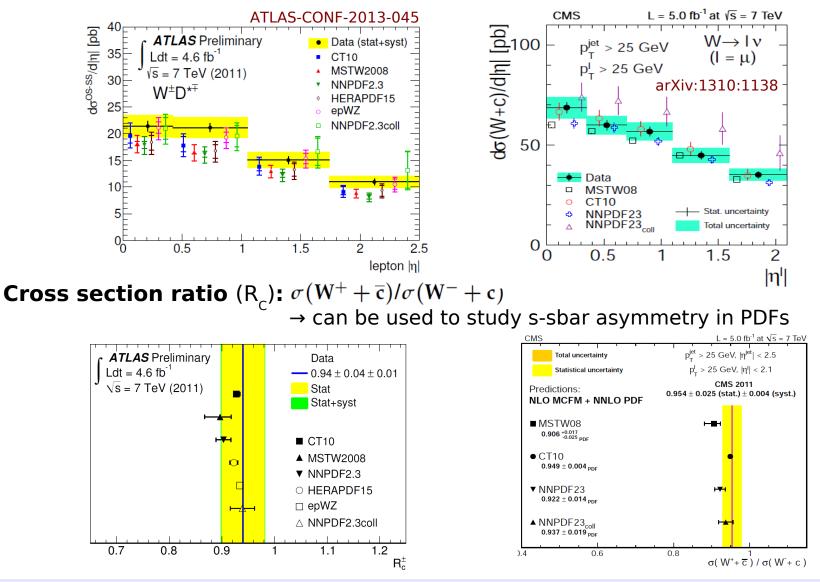
Background subtraction: perform by

subtracting the Same Sign (SS) from the Opposite Sign (OS) distributions

- \rightarrow does not affect the signal
- \rightarrow most of background processes (e.g. W \rightarrow ccbar) have same SS and OS \rightarrow significant reduction

Theory comparison:

: aMC@NLO (NLO, parton level correction is an issue)

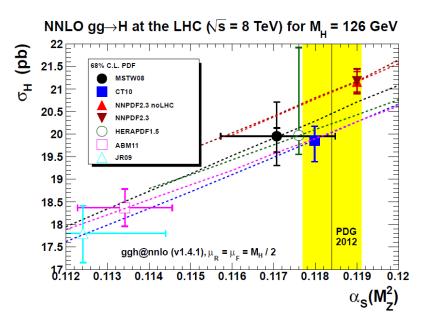


: MCFM (NLO with NNLO PDFs)

W+charm measurements at LHC

Differential measurement: → direct sensitivity to s quark density

Ringailė Plačakytė


HERAFitter HERAFitter: Motivations

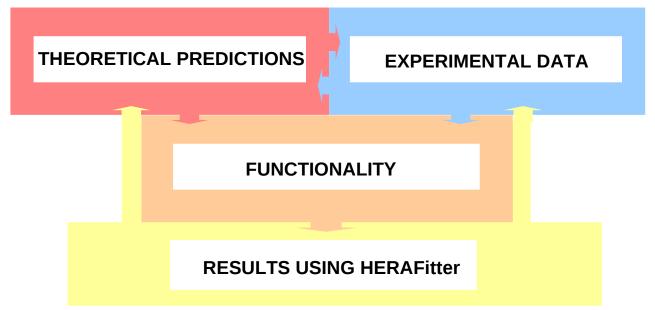
Different PDF fitting groups (CT, MSTW, NNPDF, HERAPDF, ABM, JR) use different data and methodologies to extract PDFs

→ lead to differences in the predicted cross sections

HERAFitter is an open source QCD platform which can be used for benchmarking and understanding such differences

LHC and HERA experiments published several papers with results obtained using HERAFitter

HERAFitter provides tools to assess the impact of new data on PDFs

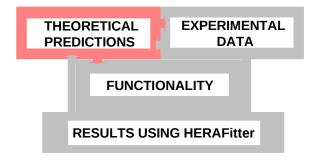


HERAFitter project is a QCD fit framework ready to extract PDFs and assess the impact of new data

www.herafitter.org

 \rightarrow everyone is welcome to download it and use it

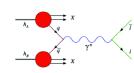
Project modular structure:



 \rightarrow many improvements and additions in the planned stable release HERAFitter-1.0.0

Ringailė Plačakytė

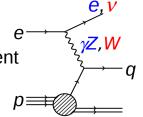
HERAFitter Theoretical Predictions



FastNLO and APPLGRID techniques

 decoupled hard scattering coefficients from PDFs stored on grids

Drell-Yan processes (*pp, ppbar*)



LO calculation x NLO k-factors APPLGRID technique

DIS inclusive processes in *ep* and fixed target

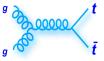
DGLAP formalism:

different schemes of heavy quark treatment VFNS: RT (MSTW), ACOT (CTEQ) FFNS (pole and running mass)

Electroweak corrections for *ep* scattering

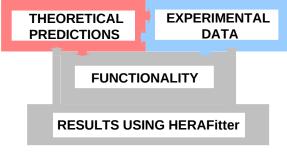
Diffractive PDFs

non-DGLAP formalism:

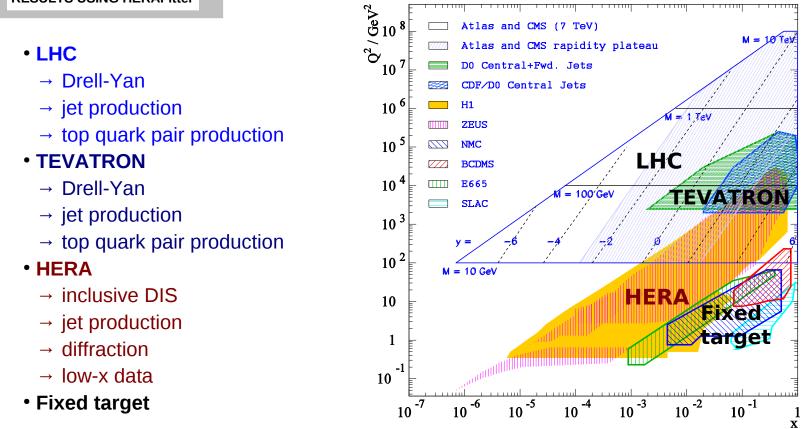

Dipole Models (GBW, IIM, BGK)

- an alternative approach for the low x region

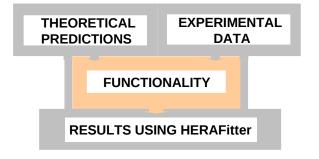
Unintegrated PDFs


- based on CCFM evolution

Top pair production



total ttbar cross section (work ongoing on the differential at approx NNLO)


Different experimental data can be used in HERAFitter:

Ringailė Plačakytė

Various forms of parametrisation ansatz

 \rightarrow HERAPDF, CTEQ style, Chebyshev, bi-log normal

Bayesian Reweighting technique

 $\rightarrow\,$ a method to study data sensitivity on PDFs without fitting the data

Regularisation methods

 \rightarrow constrain PDFs in a flexible parametrisation style

χ^2 function

- \rightarrow nuisance parameters
- \rightarrow covariance matrix
- \rightarrow mixed

Various types of uncertainty treatment for experimental data:

Hessian - error inflation by a tolerance parameter (nuisance) to accommodate inconsistencies between data sets

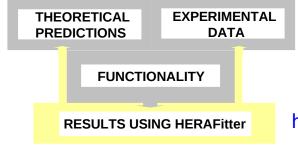
Monte Carlo - MC replica method shifting data cross section points randomly within their uncertainties

Offset - correlated sources accommodated in uncertainties

Tools

 \rightarrow PDFs in LHAPDF format, tools for pulls and uncertainties

Generic minima finding solution tool


in HERAPDF1.0.0

Ringailė Plačakytė

Lead PDFs ''

PDFs sets produced with HERAFitter (LHAPDF5.9.1): HERAPDF1.0, HERAPDF1.5, ATLAS-epWZ12, LHECNLO

https://www.herafitter.org/HERAFitter/HERAFitter/results

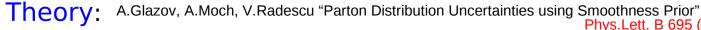
"Determination of the strange quark density of the proton from ATLAS measurements of the $W \rightarrow Iv$ and $Z \rightarrow II$ cross sections" Phys.Rev.Lett. 109 (2012) 012001

"Measurement of the inclusive jet cross section in pp collisions at \sqrt{s} = 2.76 TeV and comparison to the inclusive jet cross section at \sqrt{s} = 7 TeV using the ATLAS detector" EPJC (2013) 73 2509

"Measurement of the high-mass Drell-Yan differential cross-section in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector" Phys. Lett. B 725 (2013) 223

In CMS several analyses are using HERAFitter for PDF constraints

→ jets, DY, W+charm data



"Combination and QCD Analysis of Charm Production Cross Section Measurements in Deep Inelastic ep Scattering at HERA" Eur. Phys. J. C73 (2013) 2311

"Inclusive Deep Inelastic Scattering at High Q2 with Longitudinally Polarised Lepton Beams at HERA" JHEP 1209 (2012) 061

LHeC impact studies J.Phys.G39 (2012)

updates of ACOT scheme module (with CTEQ group) inclusion of photon PDF in QCDNUM (publication is planned)

Ringailė Plačakytė

HERAFitter HERAFitter: Future Developments

Longer term developments planed in HERAFitter:

• Theory side:

- \rightarrow QED+QCD PDFs (generalised evolution in QCDNUM)
 - \rightarrow possibility to interface APFEL (A PDF Evolution with QED corrections)

Top sector:

- → ttbar differential cross sections
- \rightarrow inclusion of Top++ (total top pair production)

Heavy flavour sector:

- \rightarrow ACOT scheme at NNLO
- → ACOT scheme inclusion in QCDNUM
- \rightarrow intrinsic charm

Interfaces and code:

- \rightarrow APPLGRID interfaces to DYNNLO
- \rightarrow LHAPDF6 (C++) interface
- \rightarrow OpenMP (currently exist for RT scheme, planned to extend to ACOT)

• Others:

- \rightarrow fitting photon PDFs
- → different evolution codes, …

Summary and Outlook

Quark PDFs at LHC mainly constrained by the W and Z production measurements

- W lepton asymmetry:
 - \rightarrow impose constrains on the valence quark PDFs
 - → plays an important role in the understand of *d/u* ratio at low x which currently poorly constrained
- Z rapidity distribution:
 - \rightarrow constrains to quarks and anti-quarks in PDFs
- W+c differential measurement:
 - \rightarrow access s quark density

some 7 TeV analyses are still being finalised, 8 TeV data yet to come.

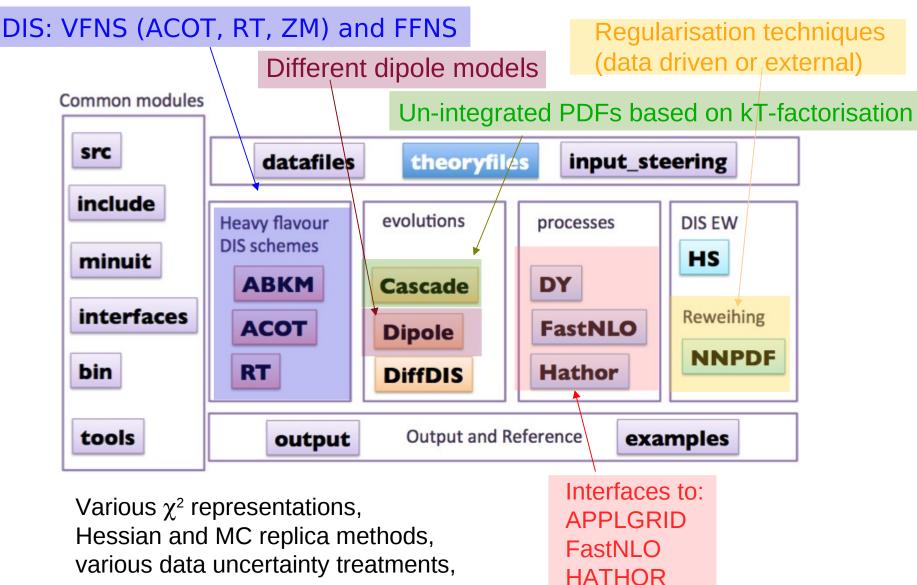
High precision of LHC data provides PDF constraints \rightarrow are used (e.g. NNPDF2.3) or started to be used in global PDF fits

Tools exist for fast interface to theory calculations in PDFs (APPLGRID, FastNLO) open source multi-functional QCD framework: HERAFitter well integrated into the high energy community (both, experimental and theory)

HERA Fitter herafitter-help@desy.de

Monthly meetings: https://herafitter.org/HERAFitter/HER

Ringailė Plačakytė



Back-up

HERAFitter HERAFitter functionality

etc...

Ringailė Plačakytė

HERAFitter / **DownloadPage**

- Versioning convention: i.j.k with
 - i stable release
 - j beta release
 - k bug fixes.
- The release notes can be found in this attachment: <u>MHERAFitter_release_notes.pdf</u>.

Date	Version	Files	Remarks	•	Releases
06/2013	0.3.1	lherafitter-0.3.1.tgz	fix release includes @manual-0.3.1.pdf and decoupled @theoryfiles.tgz		(publicly accessible)
03/2013	0.3.0	herafitter-0.3.0.tgz	release includes @manual-0.3.1.pdf and decoupled & theoryfiles.tgz		
07/2012	0.2.1	herafitter-0.2.1.tgz	fix release for 0.2.0		
05/2012	0.2.0	A herafitter-0.2.0.tgz	added functionality for LHC users		
09/2011	0.1.0	herafitter-0.1.0.tgz	first release		
Documentation				•	Documentation:

Documentation

- From 0.3.0 on a manual is provided together with an example directory.
- The README file (accessible via the package) gives an explanation for a guick start.

Web access to SVN

- For users with a valid DESY account, the SVN repository is accessible on the web at O https://svnsrv.desy.de/k5viewvc/h1fitter.
- For users without DESY account, the SVN repository is accessible on the web at https://synsrv.desy.de/basviewvc/h1fitter/with herafitter-user@desy.de account and PDFfits password.

Doxygen Documentation

The doxygen documentation is located ¹/₂ here

Links to external packages

External packages that could be run with HERAFitter via configuration flags can be accessed for convenience HERE.

HERAverager data combination package

Information can be accessed here https://wiki-zeuthen.desy.de/HERAverager.

Subscription

We encourage users to subscribe to mailing list for news and updates related to the HERAFitter webpage. (average rate of e-mails is once a month), please contact herafitter-help@desy.de (or by creating a user account to this wiki we get a notification)

Ringailė Plačakytė

OCD Tools for the LHC: from 8 to 14 TeV, 14-15 Nov, 2013

🄁 🖓 😂 🖬 🔤 🗁

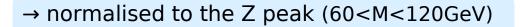
manual,

README,

DOXYGEN

release notes,

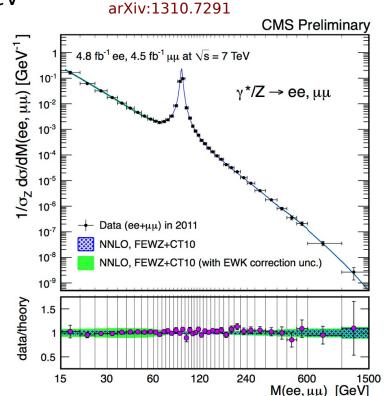
External packages


CMS Z differential measurement

Z boson rapidity y is directly related to the momentum fraction x of the interacting partons: $x_{\perp} \approx M/\sqrt{s} e^{\pm y}$

Z rapidity differential and double differential measurement at 7TeV \rightarrow 4.8 fb⁻¹ e (p^T>20,10 GeV) and 4.5 fb⁻¹ μ (p^T>14,9 GeV) channels combined

 \rightarrow differential measurement in 15 < M < 1500 GeV

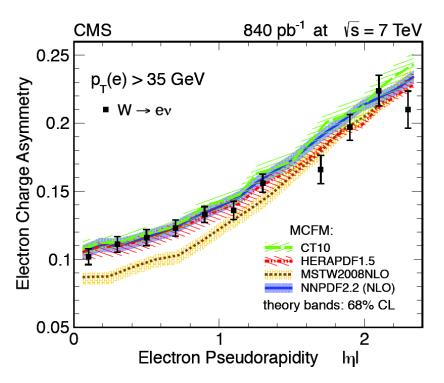


<2% statistical uncertainty

<12% systematical uncertainty (<200GeV)

 \rightarrow theory predictions: NNLO FEWZ

Blue: theory (FEWZ) + PDF uncertainty Green: + EWK correction



W lepton charge asymmetry

CMS DESY

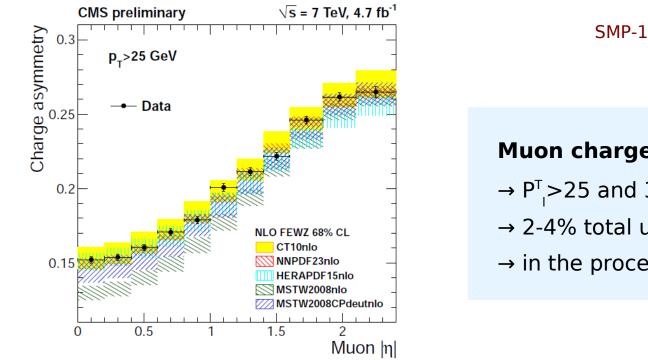
CMS W lepton asymmetry measurement

→ overall excess of W⁺ over W⁻ due to presents of two valence u quarks in the proton → probe valence quarks and PDFs rations (u, d, d, d, d, u, d, u):

PRL 109 (2012) 111806

$$A_{W} = \frac{W^{+} - W}{W^{+} + W} \approx \frac{u_{v} - d_{v}}{u_{v} + d_{v} + 2u_{sea}}$$

Electron charge asymmetry:


- $\rightarrow P^{T}_{1} > 35 \text{ GeV}, 11 \text{ bins}$
- → 4-5% total uncertainty
- \rightarrow already included in e.g. NNPDF2.3

Ringailė Plačakytė

W lepton charge asymmetry

CMS W muon asymmetry measurement

- \rightarrow 13M W⁺ and 9M W⁻ events
- \rightarrow better resolution for MET using Hadronic Recoil: $u = -MET \sum p_n^T$
- \rightarrow DY sample for normalisation correction
- \rightarrow binned maximum likelihood fits of MET are used to extract signal

SMP-12-021

Muon charge asymmetry:

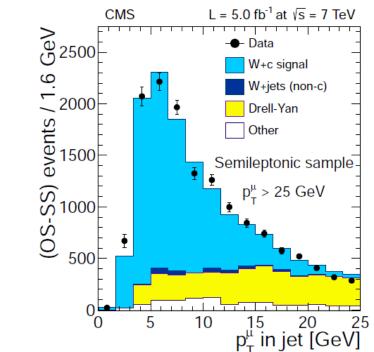
- \rightarrow P^T₁>25 and 35 GeV, 11 bins
- \rightarrow 2-4% total uncertainty
- \rightarrow in the process of publication

W+c measurements at CMS

CMS/ DESY

CMS W+charm measurement

Identification:


- \rightarrow W decays to charged leptons (e or $\mu)$ and neutrino
- → c: charm-quark jets with $p_{jet}^T > 25 \text{GeV}$, $|\eta_{jet}| < 2.5$
 - jets identified: secondary vertex $D^+ \rightarrow K^- \pi^+ \pi^+ (D^- \rightarrow K^+ \pi^- \pi^-)$ $D^{*+}(2010) \rightarrow D^0 \pi^+ (D^{*-}(2010) \rightarrow \bar{D}^0 \pi^-)$ $D^0 \rightarrow K^- \pi^+ (\bar{D}^0 \rightarrow K^+ \pi^-)$

semileptonic decay with well identified muon

Background subtraction: perform by subtracting the Same Sign (SS) from the Opposite Sign (OS) distributions

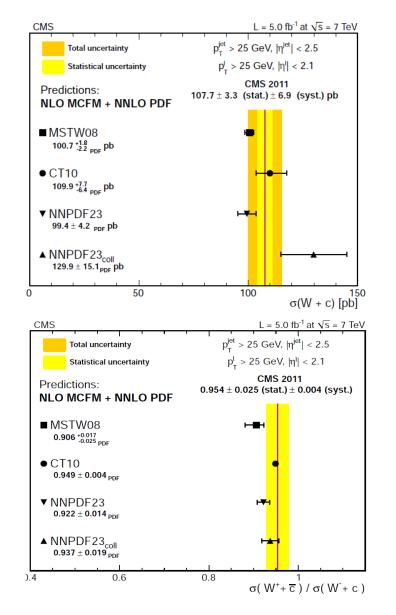
- \rightarrow does not affect the signal
- → most of background processes (W→ccbar,...) has same SS and OS → significant reduction

arXiv:1310.1138

Ringailė Plačakytė

W+c measurements at CMS

CMS W+charm measurement


Total cross section:

- $\rightarrow P^{T}_{1}$ >25 and 35 GeV
- → 6-7% total uncertainty (systematic dominant)

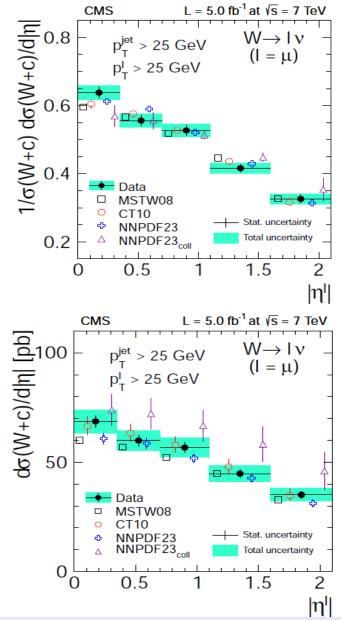
Cross section ratio:

- $\sigma(W^+ + \overline{c})/\sigma(W^- + c)$
- $\rightarrow P^{T}_{,}>25$ and 35 GeV
- → can be used to study s-sbar asymmetry in PDFs

arXiv:1310.1138

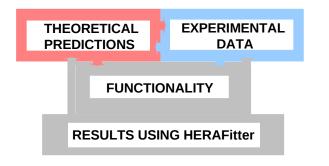
Ringailė Plačakytė

W+c measurements at CMS



CMS W+charm measurement

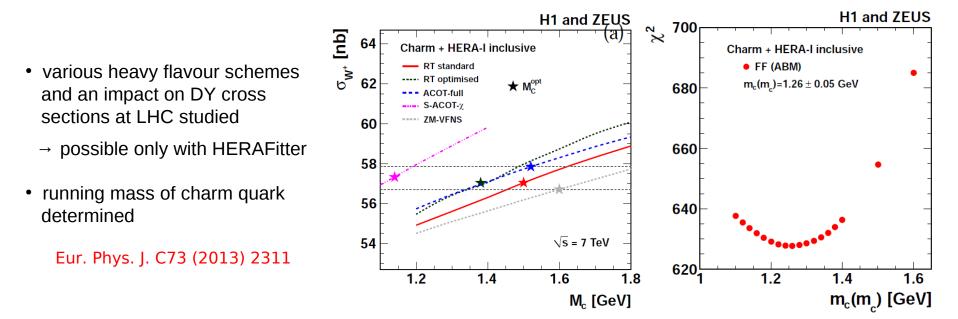
Differential measurement:


- $\rightarrow P^{T}_{1}$ >25 (e) and 35 GeV (e+ η)
- → normalised and absolute cross sections

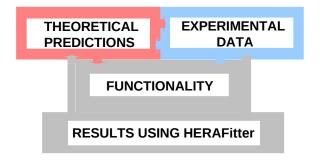
 \rightarrow direct sensitivity to s quark density

arXiv:1310.1138

Ringailė Plačakytė

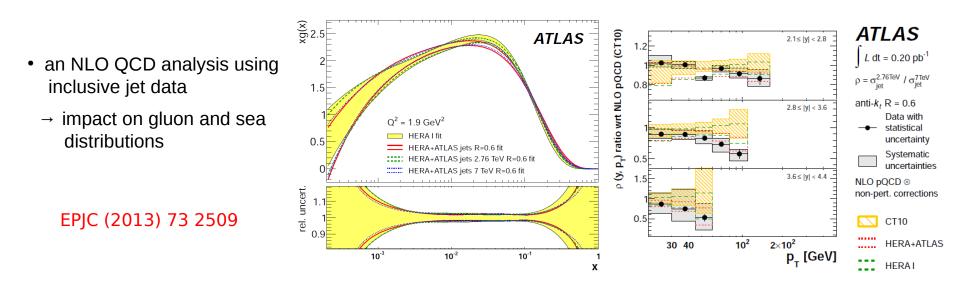


DIS inclusive processes in ep and fixed target

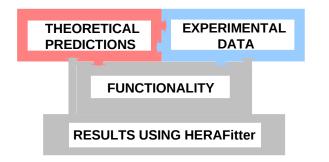

DGLAP formalism:

different schemes of heavy quark treatment VFNS: RT (MSTW), ACOT (CTEQ) FFNS (pole and running mass)

Combination and QCD Analysis of Charm Production in DIS at HERA

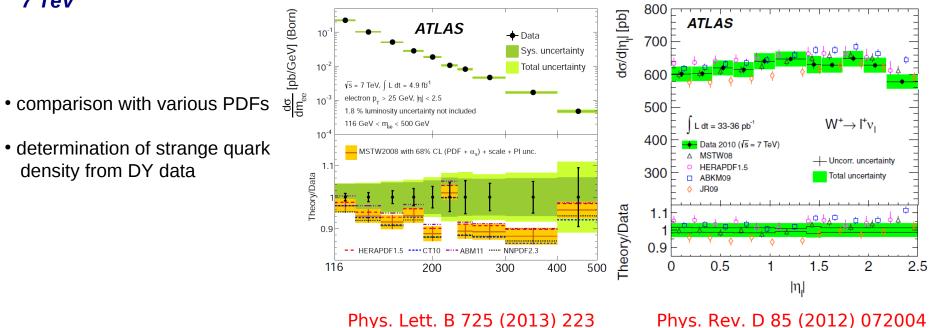


Jet production (*ep, pp, ppbar*)

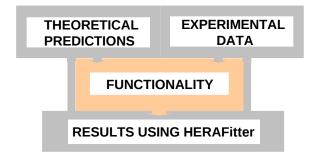

FastNLO and APPLGRID techniques

- decoupled hard scattering coefficients from PDFs stored on grids

Measurement of the inclusive jet cross section at $\sqrt{s} = 2.76$ TeV and comparison to the inclusive jet cross section at $\sqrt{s} = 7$ TeV

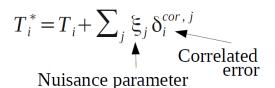


Drell-Yan processes (*pp*, *ppbar*) LO calculation x NLO k-factors APPLGRID technique


Measurement of the inclusive W and Z/ γ * cross-section in pp collisions at $\sqrt{s} = 7 \text{ TeV}$

Measurement of the high-mass Drell-Yan differential cross-section in pp collisions at $\sqrt{s} = 7 \text{ TeV}$

HERAFitter HERAFitter Functionality



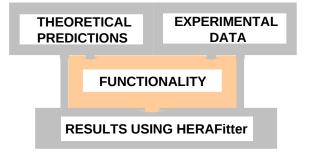
 χ^2 function

 \rightarrow nuisance parameters

$$\chi^{2} = \sum_{i} \frac{(D_{i} - T_{i}^{*})^{2}}{(\delta_{i}^{unc})^{2}}$$

D - Data T - Theory

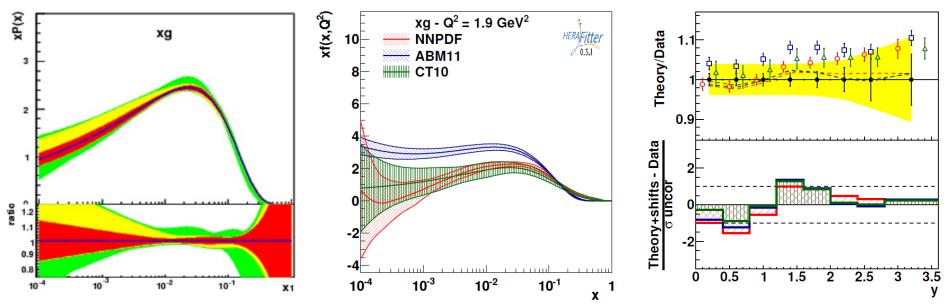
 \rightarrow covariance matrix


$$\chi^{2} = \sum_{i,j} (D_{i} - T_{i}) Cov_{i,j}^{-1} (D_{j} - T_{j})$$

 \rightarrow mixed

- \rightarrow uncertainties can be treated as multiplicative or additive
- → various models for bias corrections
- IN HERAPDF1.0.0 → tool to transform covariance matrix to nuisance parameter representation
- \rightarrow each correlated systematic source can be modified individually

HERAFitter HERAFitter Functionality


Tools

 \rightarrow PDFs in LHAPDF format tools for pulls and uncertainties

→ PDFs sets available in LHAPDF5.9.1: HERAPDF1.0, HERAPDF1.5, ATLAS-epWZ12, LHECNLO

Drawing of different uncertainties (experimental, model, parametrisation)

Calculation of theory uncertainties (symmetric and asymmetric, access PDFs via LHAPDF interface) Data - theory comparison (with uncertainty band and pulls)

