# Top quark production at D0



#### **Contents**

- Introduction
- Top quark pair production
- Single top quark production
- Forward-backward asymmetry
- Summary

#### Tevatron and D0

- birthplace of top quark
- $p\bar{p}$  collisions at  $\sqrt{s}=1.96$  TeV
- shut down on Sept. 30 2011
- 10.5 fb<sup>-1</sup> of recorded data per experiment





- high resolution inner detectors for precise tracking and vertex recons.
- electromagnetic and hadronic calorimeters
- outer muon system
- magnetic\_field

#### Top quark pair production at the Tevatron

- top pair produced in strong interaction via
  - quark-antiquark annihilation ( $\sim$  85 %)
  - ullet gluon-gluon fusion ( $\sim\!15\,\%$ )
- theoretical NNLO<sub>approx</sub> cross section of  $\sigma_{t\bar{t}}=7.46~pb~{
  m at}~m_t=172.5~GeV$  (PRD78, 034003 (2008))
- Br(t $\rightarrow$ Wb)  $\simeq 100\,\%$ tt̄ final states categorized according to W decay
  - dilepton small BR for signal ( $\sim 5\,\%$ ), small background
  - lepton+jets best in sensitivity, golden channel
  - ullet all-hadronic large BR for signal ( $\sim 50\,\%$ ), huge QCD background



#### Top Pair Decay Channels



#### Top quark pair production - lepton+jets

- $\bullet$  5.3 fb<sup>-1</sup> of data
- ullet required 1 isolated e or  $\mu$ ,  $\geq$  2 jets, large  $E_{\mathrm{T}}$
- main backgrounds: W+jets, QCD multijet production, Z+jets and diboson production
- used 3 methods to extract  $\sigma_{t\bar{t}}$ 
  - kinematic method multivariate discriminant maximum likelihood fit of distributions in discriminant (templates)
  - counting method using b-tagging neural network based b-tagging, maximum likelihood fit to data
  - combination of the above
- largest uncertainty from luminosity

$$\sigma_{
m t\bar t} \ = \ 7.78^{+0.77}_{-0.64} ({
m stat} + {
m syst}) \, {
m pb}$$





PRD 84, 012008 (2011)

#### Top quark pair production - dilepton

- 4 channels (ee+2j,  $\mu\mu+2j$ ,  $e\mu+1,2j$ )
- $\bullet$  5.4 fb<sup>-1</sup> of data
- ullet required 2 isolated leptons,  $\geq$  1,2 jets, large  $E_T$
- main backgrounds: Drell-Yan, Z boson production, diboson production, instrumental background
- used neural network based b-tagging to construct event discriminant
- $\bullet$   $t\bar{t}$  cross section extracted from the fit to b-tagging NN discriminant
- largest uncertainty from luminosity



$$\sigma_{t\bar{t}} = 7.36^{+0.90}_{-0.79} (\mathrm{stat} + \mathrm{syst}) \, \mathrm{pb}$$

PLB 704, 403 (2011)

#### Top quark pair production - lepton+jets and dilepton

- combined measurements in lepton+jets and dilepton channel
- $\bullet$  5.4 fb<sup>-1</sup> of data
- lepton+jets events with only 2 jets not used in the combination
- relative precision of 8 %

Number of b-tagged lets

 $\sigma_{t\bar{t}} = 7.56^{+0.63}_{-0.56} (\text{stat} + \text{syst}) \, \text{pb}$  PLB 704, 403 (2011)



## Single top quark production at the Tevatron

single top quark produced via electroweak interaction

• s-channel 
$$\sigma_{s-ch} = 1.04 \ pb$$
 at  $m_t = 172.5 \ GeV$ 

$$\bullet$$
 t-channel  $\sigma_{t-ch} = 2.26 \ pb$  at  $m_t = 172.5 \ GeV$ 

• tW channel  $\sigma_{tW}=0.28~pb$  at  $m_t=172.5~GeV$  PRD 74, 114012 (2006)

 observed by CDF and D0 collaborations in 2009 PRL 103, 092001 (2009)



#### Single top quark production - s+t channel cross section

- 5.4 fb<sup>-1</sup> of data, lepton+jets channel
- required 1 isolated e or  $\mu$ , large  $E_T$ 2-4 jets, 1 or 2 b-tagged jet
- main backgrounds: W+jets,  $t\bar{t}$  and multijet production
- used 3 methods to extract the signal from multivariate discriminant
- used Bayesian approach to extract s- and t-channel cross sections together and separately

$$\sigma_{\rm s+t} = 3.43^{+0.73}_{-0.74} {
m pb}$$
 $\sigma_{\rm s-ch} = 0.68^{+0.38}_{-0.35} {
m pb}$ 
 $\sigma_{\rm t-ch} = 2.86^{+0.69}_{-0.63} {
m pb}$ 





PRD 84, 112001 (2011)

#### Single top quark production - t-channel

- combined discriminant used to separate signal from background
- contructed Bayesian 2D posterior probability density for t-ch and s-ch cross sections
   no constraint on relative rates of s-ch and t-ch production
- t-ch cross section extracted from 1D posterior probability by integrating over s-ch cross section values (no assumption on s-ch cross section)
   s-ch cross section obtained in the same way

$$\sigma_{ extsf{t-ch}} \ = \ 2.90 \pm 0.59 \; ext{pb}$$
  $\sigma_{ extsf{s-ch}} \ = \ 0.98 \pm 0.63 \; ext{pb}$ 





## Forward-backward asymmetry - $A_{\mathrm{fb}}$

• QCD predicts no asymmetry at LO, small asymmetry at NLO ( $\sim\!5$  -  $9\,\%)$ 



forward-backward asymmetry

$$A_{fb} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}, \quad \Delta y = y_t - y_{\overline{t}}, \quad y = \frac{1}{2} \ln \left( \frac{E + p_z}{E - p_z} \right)$$

reconstructed  $\Delta y = q_l \cdot (y_{t,lep} - y_{t,had})$ 

• asymmetry based on charge, rapidity  $(q_l, y_l)$  of lepton from top decay

$$A_{fb}^{I} = \frac{N(q_{I}y_{I} > 0) - N(q_{I}y_{I} < 0)}{N(q_{I}y_{I} > 0) + N(q_{I}y_{I} < 0)}$$

- two different types of measurements
  - reconstruction level : after event selection, reconstruction and background subtraction
  - production level : after correction for detector effects ("unfolding")

## Forward-backward asymmetry - $\mathsf{A}_{\mathrm{fb}}$

- 5.4 fb<sup>-1</sup>, lepton+jets channel
- 1 isolated  $e/\mu$ , E/T ,  $\geq$  4 jets,  $\geq$  1 b-jet kinematic fitter to reconstruct events
- backgrounds : W+jets, multijet production
- constructed likelihood discriminant to separate signal/background
- maximum likelihood fit to measure reconstructed asymmetry
- regularized unfolding to correct for detector effects

reconstructed unfolded 
$$\begin{array}{lll} \textbf{A}_{fb} \; = \; (9.2 \pm 3.7) \, \% & \textbf{A}_{fb} \; = \; (19.6 \pm 6.5) \, \% \\ \textbf{A}_{fb} \; = \; (14.2 \pm 3.8) \, \% & \textbf{A}_{fb}^{I} \; = \; (15.2 \pm 4.0) \, \% \\ \end{array}$$

PRD 84, 112005 (2011)

#### Summary

- top pair production cross section measured with 8% relative precision
- both top pair and singletop cross sections consistent with SM prediction
- forward-backward asymmetry in  $t\bar{t}$  events above prediction





## Backup slides

# Backup slides

#### **B**-tagging

- procedure of linking a jet to b-quark
- b-hadrons usually live long enough to travel measurable distances and can produce muons in semileptonic decays
- b-hadron decays often produce displaced (secondary) verteces with tracks not pointing to primary vertex and muons which is used to recognize them from jets initiated by other partons
- some analyzed final states contain jets coming from hadronization of b quarks (top decays) their identification help to reduce combinatorial background and improve signal/background separation



#### Top quark pair production - tau+jets

- ullet semihadronic decays of au, hard to distinguish leptons from au and W decays
- 1 fb $^{-1}$  of data
- required  $\geq$  4 jets,  $\geq$  1  $\tau_h$  candidate, large  $E_T$  and  $E_T$  significance, no isolated leptons three  $\tau$  candidate categories
- neural network to further discriminate  $au/\mathrm{jets}$   $\geq 1$  b-jet using b-tag neural network
- $\bullet$  main backgrounds: multijet production,  $\rm t\bar{t}$  decays to leptons, W+jets, Z+jets
- fit to neural network discriminant to estimate signal



PRD 82, 071102 (2010)

$$\sigma_{
m t\bar t} = 6.9^{+1.5}_{-1.4} ({
m stat} + {
m syst}) \, {
m pb}$$

#### Top quark pair production - all-hadronic

- 1 fb<sup>-1</sup> of data, multijet trigger
- required  $\geq$  6 jets,  $\geq$  4 jets with  $p_T >$  40 GeV  $\geq$  2 b-tagged jets (NN), no isolated leptons
- main backgrounds: QCD multijet production data driven background model using events with 4 or 5 jets with 2 b-tags
- likelihood discriminant constructed from topological observables to separate S/B
- fit signal and background templates to likelihood output to extract signal fraction



$$\sigma_{
m tar{t}} \ = \ 6.9 \pm 2.0 \, ({
m stat} + {
m syst}) \, {
m pb}$$
 PRD 82, 032002 (2010)