
Tier-1 experience with provisioning virtualised worker

nodes on demand

Andrew Lahiff, Ian Collier

STFC Rutherford Appleton Laboratory, Harwell Oxford, UK

Batch system at the RAL Tier-1

• The RAL batch system consists of 656 worker nodes and over 9300 job slots

• Torque/Maui was used for many years, but scalability and reliability problems lead

us to investigate alternative technologies, resulting in HTCondor being selected

• One advantage of HTCondor over other batch systems is that it was designed to

make use of opportunistic resources easily

• Complex solutions have been developed to enable Torque to work with

dynamically provisioned resources

• SLURM has features which simplify the use of dynamic resources, but we

rejected SLURM based on scalability testing

• HTCondor has recently gone into production at RAL, currently with 50% of the

total CPU capacity

Integrating virtualised worker nodes

• Based on existing power management features of HTCondor

• Virtual machine instantiation

• ClassAds for offline machines are sent to the collector

• Negotiator can match idle jobs to the offline machines

• Rooster daemon detects these matches, triggering the creation of VMs

• Pool password inserted into VM using contextualisation with CloudInit

• Volatile disks for the job scratch area, CVMFS cache and /tmp are created on

the hypervisor’s local disk

• Virtual machine lifetime

• Managed entirely by HTCondor on the VM itself. Configured to:

• Only start jobs when a worker node health-check script is successful

• Only start new jobs for a specified time period

• Shut the machine down once draining has completed

Images

• Only images created by RAL sys admins are used, and are therefore trusted

• Images prepared using libvirt, KVM and Qemu

• EMI 2 SL6 worker node image identical to our physical worker nodes

• Same privileges as physical worker nodes, including access to CASTOR

Testing and performance

• Preliminary investigations into the virtualisation overhead have been done by

running the following on 8-core physical and virtual worker nodes:

1. Benchmarking

2. Copying files from CASTOR to the worker node using xrootd

3. Typical CMS MC re-reconstruction workflow

• Identical hardware was used for the physical worker nodes and hypervisors

• No attempt has been made yet to improve performance

• Testing dynamically provisioned worker nodes

Discussion
• We have successfully demonstrated a simple method for provisioning virtual

worker nodes and using them for running jobs in the production batch system

• No modifications required to existing batch system or cloud infrastructure

• Job failure rates no worse than physical worker nodes

• The RAL Tier-1 batch system almost always has idle jobs

• How to prevent it from completely taking over the private cloud?

• A fixed quota on the cloud isn’t enough, really need to use fairshares

• Current method: choose cores/memory per VM in such a way that there are

always some resources leftover per hypervisor for other users

• Virtualisation overhead

• Even without making any attempt to optimise performance, the current system

is able to perform useful work using resources which would otherwise be idle

• The main areas where improvement would be most beneficial are network and

disk I/O

• Constant draining of VMs results in inefficiencies

• Has benefits, however, e.g. rolling upgrades of kernel errata

• Could be resolved by using single-core VMs, or perhaps running short jobs

while long jobs are draining

• Alternatively run long-lived VMs

• Monitoring

• Existing monitoring infrastructure doesn’t handle dynamic environments where

nodes are coming and going: need to find solutions for this

SCD Cloud
• Prototype built to gain practical experience and test potential use cases for a

private cloud

• Available to SCD staff on a self service basis, and has around 30 active users

• Using StratusLab

• Based on OpenNebula

• Very easy to set up – Quattor configurations provided

• Using iSCSI & LVM based persistent disk storage

• Caches images

• Instantiation very fast ~20-30 seconds, sometimes less

• In the future will likely use parallel object store such as Ceph

• Cloud front end is on a VM (hosted on Hyper-V)

• Persistent disk store is on a 18TB retired disk server

• Compute resource ~100 retired batch workers with 8 cores and 16GB RAM

Introduction
• Interest in cloud computing by the major experiments has been gaining increasing

momentum, in particular as a way to make use of opportunistic resources using

direct submission to a cloud interface

• Nevertheless, grid submission to traditional batch systems is currently still the

primary method of running jobs at WLCG sites

• The ability to use virtualised worker nodes from a cloud in a traditional batch

system is potentially very useful, as it allows a site to:

1. Take advantage of the benefits of virtualisation

2. Provide both cloud and grid resources without partitioning

3. Make use of a local private cloud when there are idle jobs in the batch system

and there are free resources in the cloud

• Here we present recent work carried out at the RAL Tier-1 where we address

point 3 above

Worker nodes

condor_startd

condor_collector condor_negotiator

ARC/CREAM CEs

condor_schedds

condor_rooster

Virtual worker nodes

condor_startd

Central manager

HEPSEC06(1) Read rate(2) CPU efficiency(3) Time per event(3)

Physical 69.45 79 MB/s 99.2% 14.7s

Virtual 64.82 22 MB/s 97.3% 16.1s

• System enabled at 12:00

• Blue lines indicate additional

hypervisors enabled

• VMs have 4 cores, 8 GB RAM

• Available cloud resources are

quickly used

• Number of running virtual

worker nodes remains constant

• Networking, CPU and memory

usage of the persistent disk

storage remained low

