Flavor Physics and CP Violation 2011 May 23-27, Maale Hachamisha, Israel

CP Violation in b→s Penguins

Eli Ben-Haïm LPNHE-IN2P3-

Université Pierre et Marie Curie (Paris)

On behalf of the **Belle** and **BABAR** collaborations

Introduction

■ Standard Model (SM): the leading decay amplitude of $b\rightarrow s$ transitions is

- New physics (NP): another virtual particle in the loop.
- This can result in:
 - New CP violating phases
 ⇒ observable through CP asymmetries (?)
 - Enhanced branching fractions wrt SM expectations
 - Altered polarizations in final state (e.g. in B \rightarrow VV decays)
 - **...**

All these observables: probes for new physics!

Common analysis techniques

Background characterization:

→ Mainly continuum: $e^+e^- \rightarrow q\bar{q}$ (q = u,d,s,c). Suppression by multi-variable classifiers based on event-shape variables:

Fisher discriminant, Neural Networks (NN)...

→ Background from B decays: classified by kinematic and topological properties

Variables are often combined to a likelihood function, used in a maximum likelihood fit for signal/background separation and to measure parameters of interest

Analyses and Results

- $\sin 2\beta$ from b \rightarrow s penguins
- Branching fractions, polarizations and direct CPV in $B^+ \to \rho^0 K^{*+}$ and $B^+ \to f_0(980) K^{*+}$ BABAR arXiv:1012.4044 [hep-ex], Phys.Rev.D83:051101(R), 2011.
- Branching fractions, CP asymmetries and angular distributions for B → φ φ K
 BABAR Preliminary result, to be submitted to PRD
 Belle arXiv:0802.1547 [hep-ex]
- Amplitude analysis of $B^0 \to K^+\pi^-\pi^0$ and direct CPV in $B \to K^*\pi$ *BABAR* Preliminary result arXiv:1105.0125 [hep-ex], submitted to PRD.

$\sin 2\beta$ From b \rightarrow s Penguins (I)

Within the Standard Model (SM):

$$C_{c\bar{c}s} \approx C_{q\bar{q}s} = 0$$

$$S_{c\bar{c}s} = S_{q\bar{q}s} + \Delta S_{SM} = -\eta_{CP} \sin 2\beta$$

(same dominant phase)

New physics in the loop may cause deviation in the values of S and C.

New Physics contribution

Definitions:

$$\Delta S = S_{c\bar{c}s} - S_{q\bar{q}s}$$
 $\sin 2\beta^{eff} = -\eta_{CP} S_{q\bar{q}s}$

Theoretical prediction for ΔS_{SM} (Mode dependent)

For most of the modes, theory predicts $\Delta S_{SM} > 0$

$\sin 2\beta$ From b \rightarrow s Penguins (I)

Within the Standard Model (SM):

$$C_{c\bar{c}s} \approx C_{q\bar{q}s} = 0$$

$$S_{c\bar{c}s} = S_{q\bar{q}s} + \Delta S_{SM} = -\eta_{CP} \sin 2\beta$$
 (same dominant phase)

New physics in the loop may cause deviation in the values of S and C.

Definitions:

$$\Delta S = S_{c\bar{c}s} - S_{q\bar{q}s}$$

$$\sin 2\beta^{eff} = -\eta_{CP} S_{q\bar{q}s}$$

BABAR 04 0.65±0.18±0.04 BABAR 04 0.65±0.18±0.04 BABAR 04 0.65±0.18±0.04 BABAR 04 0.055±0.18±0.04 BABAR 04 0.055-0.02±0.10 BABAR 04 0.055-0.02±0.10 BABAR 04 0.055-0.02±0.10 BABAR 04 0.055-0.03±0.10 BABAR 04 0.055-0.03±0.10 BABAR 04 0.055-0.03±0.11

BABAR 04 0.722±0.040±0.023 Belle 04

0.726±0.037 BABAR 04

Belle 04 0.75±0.64^{+0.13}_{-0.16} BABAR 04 0.55±0.22±0.12

 $0.728 \pm 0.056 \pm 0.023$

Average (charmonium - all exps.)

In 2004:

Belle 04 0.49±0.18^{-0.17} 0.49±0.18^{-0.04} K_S⁰K_S⁰ Belle 04 -1.26±0.68±0.18 Average (s-penguin) 0.41±0.07 -2 -1.5 -1 -0.5 0 0.5 1

 $-\eta_f \times S_f$

Tensions ($\sim 3\sigma$) between $\sin 2\beta$ from $b \rightarrow c\bar{c}s$ and $b \rightarrow q\bar{q}s$ ($\Delta S < 0$)

New Physics

contribution

$\sin 2\beta$ From b \rightarrow s Penguins (II)

The situation today is quite different

Fresh $\sin 2\beta$ world averages (HFAG):

 $b \rightarrow c\bar{c}s$: 0.678 ± 0.020

 $b\rightarrow q\bar{q}s: 0.64 \pm 0.04$ (naïve!)

- Improvements:
 - hints of trends/deviations in previous measurements clarified by B factories
 - several results from (Time Dependent)
 Dalitz Plot analyses
- Still... some tension persists because of the theoretical prediction $\Delta S_{SM} > 0$

Results marked with were presented yesterday by Himansu Sahoo

Analyses and Results

- $\sin 2\beta$ from b → s penguins
- Branching fractions, polarizations and direct CPV in $B^+ \rightarrow \rho^0 K^{*+}$ and $B^+ \rightarrow f_0(980) K^{*+}$ BABAR arXiv:1012.4044 [hep-ex], Phys.Rev.D83:051101(R), 2011.
- Branching fractions, CP asymmetries and angular distributions for B → φ φ K
 BABAR Preliminary result, to be submitted to PRD
 Belle arXiv:0802.1547 [hep-ex]
- Amplitude analysis of $B^0 \to K^+\pi^-\pi^0$ and direct CPV in $B \to K^*\pi$ *BABAR* Preliminary result arXiv:1105.0125 [hep-ex], submitted to PRD.

Introduction

 ${\rm B^+} \rightarrow
ho^0~{\rm K^{^*+}}$ and ${\rm B^+} \rightarrow {\rm f_0(980)}~{\rm K^{^*+}}$

- Polarization puzzle for B \rightarrow VV modes

 Naïve expectation from helicity arguments:
 longitudinal polarization fraction (f_L) \sim 1

 B \rightarrow $\rho\rho$ has f_I > 0.9
 - but other b \rightarrow s penguin VV states have f₁ ~ 0.5
- B⁺ $\rightarrow \rho^0$ K^{*+} not observed before this analysis Predicted BF $\sim 5\pm 1 \times 10^{-6}$
- B⁺ → ρ^0 K^{*+} (partially integrated) decay rate \propto $\frac{1 f_L}{4} \sin^2 \theta_{K^{*+}} \sin^2 \theta_{\rho^0} + f_L \cos^2 \theta_{K^{*+}} \cos^2 \theta_{\rho^0}$ ⇒ angles give access to f_L
- The present analysis uses full BaBar dataset $(467M B\overline{B} \text{ pairs}) \rightarrow \text{twice the previous analysis}$

Polarizations of Charmless Decays

Longitudinal Polarization Fraction (f₋)

Analysis

- Reconstruction: ρ^0 and $f_0(980) \rightarrow \pi^+ \pi^-$; $K^{*+} \rightarrow K^0_S \pi^+$ and $K^+ \pi^0$
- Maximum likelihood fit with :
 - 7 variables: m_{ES} , ΔE , NN, $m_{\pi\pi}$, $m_{K\pi}$, $|\cos\theta_{\pi\pi}|$, $\cos\theta_{K\pi}$
 - 12 event categories: 2 signals, continuum, 9 classes of background from B

Results

$$B^+ \to \rho^0 \ K^{*+}$$
 and $B^+ \to f_0(980) \ K^{*+}$

- **Observation** of the $B^+ \to \rho^0 K^{*+}$ decay
 - BF = $(4.6 \pm 1.0 \pm 0.4) \ 10^{-6}$ \Rightarrow Significance = 5.3σ (including syst.)
 - $f_L = 0.78 \pm 0.12 \pm 0.03 \Rightarrow$ Consistent with large f_L prediction and other K* ρ modes
 - $\bullet \quad A_{\rm CP} = 0.31 \pm 0.13 \pm 0.03$

 $K^{*0}\rho^+$: pure penguin

 $K^{*0}\rho^0$: penguin + color-suppressed $\overline{b} \to \overline{u}u\overline{s}$ tree

 $K^{*+}\rho^0$: penguin + color-allowed $\overline{b} \to \overline{u}u\bar{s}$ tree

- Improved $B^+ \rightarrow f_0(980) K^{*+}$ results
 - BF[$f_0(\to \pi^+ \pi^-) K^{*+}$] = $(4.2 \pm 0.6 \pm 0.3) 10^{-6}$
 - $\bullet \quad A_{\rm CP} = -0.15 \pm 0.12 \pm 0.03$

Previous results based on 232M B\$\overline{B}\$ BF(B+ \rightarrow \rho^0 K^{*+}) < 6.1 \times 10^{-6} @ 90\% CL BF(B+ \rightarrow f_0(980) K^{*+}) = (5.2 \pm 1.2 \pm 0.5) 10^{-6} PRL 97, 201801 (2006)

Analyses and Results

- $\sin 2\beta$ from b \rightarrow s penguins
- Branching fractions, polarizations and direct CPV in $B^+ \to \rho^0 K^{*+}$ and $B^+ \to f_0(980) K^{*+}$ BABAR arXiv:1012.4044 [hep-ex], Phys.Rev.D83:051101(R), 2011.
- Branching fractions, CP asymmetries and angular distributions for $B \rightarrow \phi \ \phi \ K$

BABAR Preliminary result, to be submitted to PRD arXiv:0802.1547 [hep-ex]

■ Amplitude analysis of $B^0 \to K^+\pi^-\pi^0$ and direct CPV in $B \to K^*\pi$ BABAR Preliminary result arXiv:1105.0125 [hep-ex], submitted to PRD.

12

Interference between tree and penguin amplitudes under the η_C peak

- Standard Model: tree and penguin have ~ the same weak phase ⇒ no direct CP-Violation expected
- Non-zero NP relative CP violating phase ⇒ significant direct CP asymmetry could be at the ~40% level (Hazumi, Phys. Lett B 583, 285 (2004))
- Only the $J^P=0^-$ component of $(\phi\phi)K$ interferes with $(\eta_C)K$ \Rightarrow angular analysis needed to study the spin structure of the $\phi\phi$ system in this talk
- BaBar: Full dataset (464M $B\overline{B}$) ~ Belle: 449M $B\overline{B}$ (update coming soon...)

Analysis: peaking background

- Use 5 regions in the $m_{\phi 2}$ $m_{\phi 1}$ plane to distinguish final states with 5 kaons
 - $B \rightarrow 5K$ fits in the different regions
 - Use cross-region fractions from Monte Carlo to estimate peaking background

total

 $B^+ \rightarrow \phi \phi K^+ N_{siq} = 178 \pm 15$

Analysis: fit to data, yields

- BaBar: Maximum likelihood fit to m_{ES} , ΔE , Fisher, $m_{\phi 1}$, $m_{\phi 2}$
- Belle: Cut on a likelihood of Fisher, $\cos\theta_{\rm B}$, Δz , and flavor tagging on

Eli Ben-Haim

Results: branching fraction and A_{CP}

 A_{CP} ($\phi\phi K^+$) below and within the η_C region (consistent with 0 and SM)

J	,	,	,
$m_{\phi\phi}$	$< 2.85 \mathrm{GeV}$	$2.94 – 2.98 \mathrm{GeV}$	$2.98 – 3.02 \mathrm{GeV}$
BABAR	$-0.10 \pm 0.08 \pm 0.02$		
Belle	$0.01^{+0.19}_{-0.16} \pm 0.02$	$0.15^{+0.16}_{-0.17} \pm 0.02$	

Analyses and Results

- $\sin 2\beta$ from b \rightarrow s penguins
- Branching fractions, polarizations and direct CPV in $B^+ \to \rho^0 K^{*+}$ and $B^+ \to f_0(980) K^{*+}$ BABAR arXiv:1012.4044 [hep-ex], Phys.Rev.D83:051101(R), 2011.
- Branching fractions, CP asymmetries and angular distributions for B → φ φ K
 BABAR Preliminary result, to be submitted to PRD
 Belle arXiv:0802.1547 [hep-ex]
- Amplitude analysis of $B^0 \to K^+\pi^-\pi^0$ and direct CPV in $B \to K^*\pi$ *BABAR* Preliminary result arXiv:1105.0125 [hep-ex], submitted to PRD.

Introduction: Dalitz-plot (DP)

- Each intermediate resonance in P → 1 2 3
 appears as a structure in the DP according to its mass, width and spin
- Resonance parameterization (isobar model):

$$A = \sum A_i = \sum \mathbf{C_i} \mathbf{F}(m_{13}^2, m_{23}^2)$$

complex $\angle \otimes$ e.g. Breit-Wigner

+ similar relation for the CP conjugate amplitude: $\overline{A} = \sum \overline{A}_i = \sum \overline{C}_i F(m_{13}^2, m_{23}^2)$

Superimposed resonant contributions \rightarrow interference \rightarrow access to phases

Directly extracted parameters: isobar amplitudes C_i Other parameters (A_{CP} , relative phases, Branching Fractions) are computed from them

The present analysis is done with the full BaBar dataset: 454M BB pairs

The Dalitz-plot model

- Resonances populate the borders of the DP
- Corners (where one particle is soft) are "strategic" for interference measurement
- This is a **flavor specific mode**: no interference between specific components of the B⁰ / \overline{B}^0 DP (e.g. K*+ π - and K*- π +)
 - \Rightarrow A_{CP} is measurable here
 - \Rightarrow relative phase measurable only in $B^0 \rightarrow K_S \pi^+ \pi^-$ (self-conjugate)
- Model also contains :
 - Continuum background
 - 19 backgrounds from B decays

Motivations

- In general: rich resonance structure \Rightarrow access to many observables:
 - A_{CP}
 Branching Fraction

 For each component
 - relative phases between components

which can be used to set non-trivial constraints on the CKM parameters $(\overline{\rho}, \overline{\eta})$

- In particular: measurement of the direct CP violation in $B^0 \to K^{*+} \pi^-$ decays

 (Gaining sensitivity by combination with $B^0 \to K_S \pi^+ \pi^-$ [PRD 80, 112001 (2009), BABAR]) $\to K \pi$ puzzlo in the $K^* \pi$ system? (See talks from Gagan Mohanty and Harry Linkin)
 - \Rightarrow K π puzzle in the K* π system? (See talks from Gagan Mohanty and Harry Lipkin)

But also... (not the main subject of this talk...)

Access CKM angle γ from phases related to the $K^*\pi$ intermediate states in $B^0{\to}K^+\pi^-\pi^0$ and $B^0{\to}K_S\pi^+\pi^-$

 γ measurement: tree amplitudes of B \rightarrow K^{*} π (Cabibbo supressed wrt b \rightarrow s penguins)

 \Rightarrow need to eliminate b \rightarrow s penguin amplitudes

$\mathrm{B}^0 \rightarrow \mathrm{K}^+ \, \pi^- \, \pi^0$

Goodness of fit – distributions of $m(\pi^{-}\pi^{0})$

Goodness of fit – distributions of m(K $^{+}\pi^{0}$)

 $\mathrm{B}^0 \rightarrow \mathrm{K}^+ \, \pi^- \, \pi^0$

22

Results

- Signal events: 3670 ± 96 (stat.) ± 94 (syst.)
- Four different minima found by the fit. The lowest is separated from the others by 5.4 units of the log-likelihood (3.3 σ); signal yields are very close
- **BF**(**B**⁰ \rightarrow **K**⁺ π ⁻ π ⁰) = 38.5 ± 1.0 (stat.) ± 3.9 (syst.) × 10⁻⁶
- Evidence of direct CP violation in $B^0 \to K^{*+}\pi^-$ (3.1 σ)

Present analysis (mind the scales)

Other results

$B^0 \rightarrow K^+ \pi^- \pi^0$

Information about γ from K*(892) π

The following linear combination is free from QCD penguins

Ciuchini, Pierini & Silvestrini [PRD74:051301 2006]

Plenni & Silvestrini [PRD74:051301 2006]
$$\mathcal{A}_{\frac{3}{2}}(K^*\pi) = \frac{1}{\sqrt{2}}\mathcal{A}(B^0 \to K^{*+}\pi^-) + \mathcal{A}(B^0 \to K^{*0}\pi^0)$$
 Populate the same $\mathsf{B}^0 \to \mathsf{K}^+\pi^-\pi^0$ DP

Neglecting EW penguins, its weak phase $\Phi_{\frac{3}{2}} = -\frac{1}{2} \text{Arg}(\overline{A}_{\frac{3}{2}}/A_{\frac{3}{2}})$ is γ

Phase difference from $B^0 \to K_S \pi^+ \pi^- DP$

 $K^*\pi$ amplitudes (drown to scale):

- \Rightarrow Destructive interference of the neutral and charged K* π amplitudes (expected...)
- \Rightarrow We cannot measure $\Phi_{3/2}$ using K*(892) π amplitudes

Other results

$B^0 \rightarrow K^+ \pi^- \pi^0$

Information about γ from ρ K

Similar argument in the $B^0 \to \rho K$ system:

$$\mathcal{A}_{\frac{3}{2}}(\rho K) = \frac{1}{\sqrt{2}}\mathcal{A}(B^0 \to \rho^- K^+) + \mathcal{A}(B^0 \to \rho^0 K^0)$$
 From B⁰ \to K⁺ $\pi^- \pi^0$ DP

From $B^0 \rightarrow K_S \pi^+ \pi^- DP$

ρK amplitudes (drown to scale):

The resulting $\Phi_{3/2}$:

FPCP, May 24th 2011

Other results SU(3) sum rule

 $B^0 \rightarrow K^+ \pi^- \pi^0$

■ Sum rule assuming SU(3) symmetry:

Gronau, Pirjol & Zupan [PRD81:094011 2010]

$$|\overline{\mathcal{A}}_{\frac{3}{2}}(K^*\pi)|^2 - |\mathcal{A}_{\frac{3}{2}}(K^*\pi)|^2 = |\mathcal{A}_{\frac{3}{2}}(\rho K)|^2 - |\overline{\mathcal{A}}_{\frac{3}{2}}(\rho K)|^2.$$

We measure the asymmetry parameter defined like:

$$\Sigma_{\frac{3}{2}} = \frac{|\overline{\mathcal{A}}_{\frac{3}{2}}(K^*\pi)|^2 - |\mathcal{A}_{\frac{3}{2}}(K^*\pi)|^2}{|\overline{\mathcal{A}}_{\frac{3}{2}}(\rho K)|^2 - |\mathcal{A}_{\frac{3}{2}}(\rho K)|^2} + 1.$$

$$\Sigma = 0 \Leftrightarrow \text{exact SU}(3)$$

 $\Sigma \neq 0 \implies$ contribution from strangeness violating New Physics operators

Result:

$$\Sigma_{\frac{3}{2}} = 0.82^{+0.18}_{-0.92} \text{ (stat.)}^{+0.11}_{-1.35} \text{ (syst.)}$$

⇒ Sum rule applies within uncertainties

Summary and Conclusions

- BaBar and Belle continue to produce physics results, adding more information and using more sophisticated analysis techniques to improve the precision of measurement in $b \rightarrow s$ penguin modes
- All measurements agree with the standard model predictions, though a few tensions and puzzles still exist
- The actual statistics is not sufficient to tell whether or not these could be indications for new physics.

To find new physics in b \rightarrow s penguins we need SuperB

Backup

The BaBar Detector

Eli Ben-Haim

The Belle Detector

More on BaBar and Belle

 Data taking periods over for the B-Factories In April 2008 for BABAR In June 2010 for Belle

Outstanding luminosity records

BABAR: 433 fb⁻¹ @ Y(4S) + ~54 fb⁻¹ 40 MeV below

Belle: 711 fb⁻¹ ~100 fb⁻¹

Hundred of journal articles published
 Sustained publication rates for both experiments – Physics of the B-Factories
 Plans for data preservation and long-term analysis (e.g. BABAR LTDA project)

Quick Reminder of Basics

V_{CKM} Unitarity ⇒

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

$$\underset{\infty \lambda^3}{\sim \lambda^3}$$

In other unitarity conditions (triangles) sides are very different.

Second and third columns: flat triangle for B_S

CP Violation is possible in the Standard Model only if V_{CKM} is complex $\Leftrightarrow \eta \neq 0 \Leftrightarrow$ Unitarity Triangle is not flat

We want to determine ρ and η experimentally

Results: angular study

■ Project $J^P=0^-$ component by weighting $m_{\phi\phi}$ distribution with the product of Legendre polynomial and spherical harmonic

 $P_2(\cos\theta_1) \operatorname{Re} \left[Y_2^2(\theta_2, \chi) \right] = \frac{25}{4} \left\{ 3\cos^2(\theta_1) - 1 \right\} \sin^2(\theta_2) \cos(2\chi)$

- η_C region: consistent with $J^P=0^-$
- Below η_C region: not consistent with $J^P=0^-$ (but with $J^P=0^+$).

below η_c

 ϕ_2

Information from $B^0 \rightarrow \pi^+ \pi^- K^0_S$

The likelihood projection (including systematic uncertainties) of the parameters

$$\Delta\Phi(K^*(892)\pi) \equiv \arg(C_{K^{*+}(892)\pi^{-}}) - \arg(C_{K^{*-}(892)\pi^{+}})$$

The constraint (statistically limited):

$$-137^{\circ} < \Delta \phi \ [K^*(892) \ \pi] < -5^{\circ} \ \text{excluded at } 95\% \ \text{CL}$$

Extraction of CKM Angle γ

$$\begin{split} & \mathsf{K}^*\pi \text{ Isospin relations:} \\ & \mathsf{A}(\mathsf{B}^0\!\!\to\!\mathsf{K}^{*+}\!\pi^-) = \mathsf{V}_{\mathsf{us}} \mathsf{V}^*_{\mathsf{ub}} \mathsf{T}^{+-} \quad + \quad \mathsf{V}_{\mathsf{ts}} \mathsf{V}^*_{\mathsf{tb}} \mathsf{P}^{+-} \\ & \mathsf{A}(\mathsf{B}^+\!\!\to\!\mathsf{K}^{*0}\!\pi^+) = \mathsf{V}_{\mathsf{us}} \mathsf{V}^*_{\mathsf{ub}} \mathsf{N}^{0+} \quad + \quad \mathsf{V}_{\mathsf{ts}} \mathsf{V}^*_{\mathsf{tb}} (-\mathsf{P}^{+-}\!\!+\!\mathsf{P}^\mathsf{C}_{\mathsf{EW}}) \\ & \mathsf{A}(\mathsf{B}^+\!\!\to\!\mathsf{K}^{*+}\!\pi^0) = \mathsf{V}_{\mathsf{us}} \mathsf{V}^*_{\mathsf{ub}} (\mathsf{T}^{+-}\!\!+\!\mathsf{T}^{00}\!\!-\!\mathsf{N}^{0+}) + \mathsf{V}_{\mathsf{ts}} \mathsf{V}^*_{\mathsf{tb}} (\mathsf{P}^{+-}\!\!-\!\!\mathsf{P}^\mathsf{C}_{\mathsf{EW}} \!+\!\!\mathsf{P}_{\mathsf{EW}}) \\ & \sqrt{2} \mathsf{A}(\mathsf{B}^0\!\!\to\!\mathsf{K}^{*0}\!\pi^0) = \mathsf{V}_{\mathsf{us}} \mathsf{V}^*_{\mathsf{ub}} \mathsf{T}^{00} \quad + \quad \mathsf{V}_{\mathsf{ts}} \mathsf{V}^*_{\mathsf{tb}} (-\mathsf{P}^{+-}\!\!+\!\!\mathsf{P}_{\mathsf{EW}}) \end{split}$$

No other hypothesis than Isospin is used

Taking the $B^0 \rightarrow K^{*+}\pi^-$ and $B^0 \rightarrow K^{*0}\pi^0$ subsystem

Neglecting P_{EW}, the amplitude combinations:

$$3A_{3/2} = A(B^0 \to K^{*+}\pi^-) + \sqrt{2.}A(B^0 \to K^{*0}\pi^0) = V_{us}V_{ub}^*(T^{+-}+T^{00})$$

$$3\overline{A}_{3/2} = \overline{A}(\overline{B}^0 \to K^* \pi^+) + \sqrt{2.}\overline{A}(\overline{B}^0 \to \overline{K}^0 \pi^0) = V^*_{us} V_{ub} (T^{+} + T^{00})$$

Gives:
$$R_{3/2} = (3A_{3/2})/(3\overline{A_{3/2}}) = (e^{-2i\gamma})$$

CPS PRD74:051301 GPSZ PRD75:014002

Direct access to y CKM angle

Extraction of CKM Angle γ

From experiment:

Measurable from $\mathbf{K}^{+}\pi^{-}\pi^{0}$ and $\mathbf{K}^{0}{}_{s}\pi^{+}\pi^{-}$

-
$$|A(B^0 \rightarrow K^{*+}\pi^-)|$$
 and $|A(B^0 \rightarrow K^{*0}\pi^0)|$

- $|\overline{A}(B^0 \to \overline{K}^*\pi^+)|$ and $|\overline{A}(B^0 \to \overline{K}^{*0}\pi^0)|$

Through BRs and A_{cp}

Measurable from $\mathbf{K}^{+}\pi^{-}\pi^{0}$

$$\phi = \arg(A(B^0 \rightarrow K^{*+}\pi^-)A^*(B^0 \rightarrow K^{*0}\pi^0))$$

$$\overline{\phi} = \arg(\overline{A}(\overline{B}^0 \to \overline{K}^*\pi^+)\overline{A}^*(\overline{B}^0 \to \overline{K}^{*0}\pi^0))$$

Through interference in the same DP B°(B°-bar) plane

Measurable from $K_s^0\pi^+\pi^-$

$$\Delta \phi = \arg(\overline{A}(\overline{B^0} \to K^* \pi^+) A^*(B^0 \to K^{*+} \pi^-))$$

Through interference with other components

38