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Pile-up at ATLAS

* In-time pile-up: additional interactions in the same bunch crossing
> Directly related to the number of reconstructed primary vertices (N,,)

> Generally adds energy by contributing additional topo-clusters
> Significant global and local fluctuations not described by N,

* Out-of-time pile-up: several preceding
bunch crossings contribute to the g
calorimeter signal o8
> LAr signal shape spans approximately 600 o6l
ns with a long negative tail } "Gfo%
> Generally subtracts energy from pre- t %,
existing topo-clusters 0.2} 0,
3 %,
> We use the instantaneous luminosity to o o,
obtain an estimate of the out-of-time ; ¥
activity: <p> = L X Gjnei/ (Npunch * fiuc) B T
Time (ns)
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An Average Offset Correction

<Ap;>=ax(Np, —-1)+B x<p>
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* Coefficients o and B are partial derivatives of the uncalibrated jet p;
with respect to N, and <u>, dependent on jet type and |n|

* Correction is derived in MC and validated using track jets and y+jet
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Offset Dependence on Jet |n|

<Ap;>=ax(Np, —-1)+B x<p>
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e Small but significant dependence on |n| for in-time term

e Sensitivity to out-of-time pile-up is highly |n|-dependent, due to varying
granularity and signal shape, as well as occupancy and cluster size
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Offset Dependence on Jet p;

<Ap;>=ax(Np, —-1)+B x<p>
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* Pile-up offset initially expected to be independent of jet p;: contributions
from pile-up are not directly related to the hard jet

e Sensitivity to pile-up is related to occupancy in the jet core, which depends
on jet p; (more deposits above the noise threshold)
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Effect of the Offset Correction

* With no pile-up correction,
average jet response is time-
dependent: pile-up conditions
vary with time

 The average offset correction
restores the jet response to
what we expect in the absence
of pile-up (n=0)

* Subsequent response
corrections are thus allowed to
be time-independent
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* <u>and N,, are at best indirect
indicators of pile-up activity @~ = ¥

> <U>is an average over 0(10°) bunch
crossings, so it cannot describe
fluctuations in out-of-time pile-up

N, = 4 but small offset

> Large fluctuations in the offset for any
given number of pile-up interactions

> Npy, sensitive to vertex reconstruction
inefficiencies N,, = 2 but large offset

* The “jet areas” correction technique addresses all of these issues

> Obtain a direct estimate of in-time and out-of-time pile-up activity from low-p;
calorimeter deposits: p = median(p,/area) of R = 0.3 k, jets, |n| < 2.0

> Take into account variations in jet catchment area: p;“°"" = p; — p x area

> |deally, a single correction applicable to all jet definitions, including subjets!
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Jet Areas Correction: In-time Pile-up
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e Jet areas correction performs well in both central and forward
regions: sensitivity to in-time pile-up is roughly constant in |n|

* Small overcorrection: p calculated from very low p; R=0.3 k, jets,
applied to 20 GeV R=0.6 anti-k
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Jet Areas Correction: Out-of-time Pile-up
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e Jet areas correction performs well against out-of-time pile-up for
central jets, but not for forward jets

e Sensitivity to out-of-time pile-up is strongly n-dependent, but p is
determined from clustersin |n| <2

* Aresidual (n, u)-dependent correction is under development
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Pile-up Fluctuations and Jet Resolution

Pile-up induced offset in a random cone: Ap; = <Ap>* G, * O},

* Global and local pile-up
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Pile-up Jets: Multiplicity

Pile-up induced offset in a random cone: Ap; = <Ap>* G, * O},
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* Global pile-up corrections eliminate up to 97% of “pile-up jets”
 Remaining 3% due to localized fluctuations

* Reject nearly all pile-up jets with the jet vertex fraction (JVF): fraction of matched
track p; compatible with the hard scatter
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Local Fluctuations and Tracks

50:'I"'|'"I"'I"'I'”I"'I"'I"'l"'l"‘l"'l;

45:_ Anti-k, LCW R=0.6 ATLAS Preliminary 7
- 20<p_ <30 GeV Simulation

40F M| <1.9 \Vs=7TeV

= Correlation: 0.50
35 Slope of linear fit: 0.76

30
25
20
15

<u> = 40

IIIIIIIIIIIIIIIIIIIII

Zp; of matched pile-up tracks [GeV]

rea [GeV]

o
X
Q

* By matching tracks to jets, we can assess the impact of pile-up on a jet-by-jet basis
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* Fluctuations are similar in size to the expectation from global pile-up activity
 However, tracks describe only 40% of the pile-up offset

 Work is ongoing to understand the potential of tracks to address local fluctuations
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Local Fluctuations Without Tracks

e Tracking information is only available for |n| < 2.5, but forward jets
are important for many analyses (e.g. VBF Higgs)

* Given a forward jet, how to classify it as hard-scatter or pile-up?

* Pile-up jets are generally random combinations of particles from
several interactions

* As compared to a hard-scatter QCD jet, pile-up jets should be wider,
with no prominent core

e Calorimeter-based substructure should be very useful!
> Width, prominence of leading subjet...
> Response to grooming procedure (both AR and py)
> Angular structure function (ASF)
> |deas from image processing...
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Relevance to Boosted Object Analyses

* Trimming at 5% (R, = 0.3) is
necessary for 200 GeV jets at
Np, =15

* At higher levels of pile-up (up to
N,, =30 already in 2012), we
should expect that 5% may be
insufficient

* An elegant solution: apply a
pile-up correction (jet areas,
track-based) to subjets before
trimming

> “Automatically” correct the jet
shape, including mass

> Loosen trimming parameter?

(M) [GeV]
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Summary and Conclusions

* In the past year, there has been significant progress in
understanding the effects of pile-up on jets in ATLAS
> Commissioning of an average offset correction that accounts for both in-time
and out-of-time pile-up
> Development of a “jet areas” correction technique that accounts for global
fluctuations in pile-up
> Preliminary understanding of both global and local pile-up fluctuations, as well

as the interplay between pile-up and noise suppression
 Moving forward, there’s still much left to do:

> Commission the jet areas correction, with specific attention to issues in the
forward region

> Develop track-based corrections/classifiers for local pile-up fluctuations

> Explore the use of substructure to reject pile-up jets

> Test these correction techniques in the context of substructure analyses
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