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Hard Probes

 High-pT partons & jets
 Heavy quarks / open flavor hadrons
 Quarkonia (J/ψ, Ƴ)
 Electroweak probes (l+l−, γ, Z)
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 Production rates are calculable in SM
 Caveats: quarkonia, nuclear PDFs, etc.

 Final-state interactions can be factorized from production 
 A+A results can be normalized to p+p and/or p(d)+A
 Final state interactions are negligible for EW probes
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HP Methodology

 Formulate production in A+A as hard QCD process with 
factorizable final state interactions (FSI)

 Formulate FSI in terms of medium properties (e.g. transport 
coefficients) that can be calculated for any medium model

 Identify observables that are sensitive to certain aspects of 
the structure of the medium, e.g.:
 Weakly vs. strongly coupled plasma

 Scale separating weak from strong coupling

 Quasiparticle structure

 Calculate medium properties relevant to FSI on the lattice
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Hot QCD matter properties
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Which properties of hot QCD matter can we hope to determine
with the help of hard probes ?
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Πem
µν (k) = d 4x∫ eikx jµ (x) jν (0) QGP Radiance:  Lepton pairs, photons
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What we hope to learn
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Apart from Πµν all medium properties are expressed as correlators of color
gauge fields. They reflect the gluonic structure of the QGP.

At high Q2 and/or high T, the QGP is weakly coupled and has a quasiparticulate 
structure. At which Q2 (T) does it become strongly coupled? Does it still contain 
quasiparticles? Can we use hard partons to locate the transition? Which 
quantities tell us where the transition occurs?
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q̂ = ρ q2 dq2 dσ

dq2∫ = dx− Fi
+ (x− )F + i (0)∫
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Parton energy loss
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Scattering centers 
⇔ color charges

Elastic energy loss:

Radiative energy loss:
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Why q-hat is important
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Majumder, BM, Wang argued
that η/s and q are related at 
weak coupling in gauge theories
[PRL 99, 192301 (2007)]:

ˆ

η / s = const × T3 / q̂

At strong coupling, η/s saturates
at 1/4π, but q increases without 
limit. Unambiguous criterion for
weak vs. strong coupling?

ˆ

Thursday, August 23, 12
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Majumder, BM, Wang argued
that η/s and q are related at 
weak coupling in gauge theories
[PRL 99, 192301 (2007)]:

ˆ

η / s = const × T3 / q̂

At strong coupling, η/s saturates
at 1/4π, but q increases without 
limit. Unambiguous criterion for
weak vs. strong coupling?

ˆ

Collisional energy loss parameter e is sensitive to
mass m of scatterers, goes to zero in m →∞ limit,
unless scatterings centers have a dense spectrum
of excited states (think: atoms). Thus e is a probe
of medium structure at color screening scale.

ˆ

ˆ

Thursday, August 23, 12



●

●
● ● ● ● ●

20 40 60 80 100 120 140

0
2

4
6

8

E (GeV)

q̂
(T

ê)
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q̂ / (Tê)

VNI/BMS reproduces the perturbative (HTL) value for q-hat and e-hat with 

Assume that effective mass of partons in the medium is  M eff = ms ×MHTL

q̂ / (Tê) ≈ 4
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Core questions

 What is the mechanism of energy loss ? 
 “radiative” = into non-thermal gluon modes
 “collisional” = directly into thermal plasma modes

 How are radiative and collisional energy loss affected by 
the structure of the medium (quasiparticles or not)?
 e.g.: Bluhm et al, 1204.2469; Kolevatov & Wiedemann, 0812.0270
 AdS/CFT inspired models with weak-strong coupling transition?

 What happens to the lost energy and momentum ?
 If “radiative”, how quickly does it thermalize = what is its 

longitudinal momentum (z) distribution ?
 What is its angular distribution (the jet “shape”) = how much is 

found in a cone of angular size R ?
 How do the answers depend on the parton flavor ?
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Where does jet physics start?
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The e-A baseline
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q-hat
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q̂ = dx− Fi

+ (x− )F + i(0)∫
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Jets in the medium
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Qs = qL ≈ mD Nscatt

r⊥ jet = θ jetL
Momentum scale of medium
Transverse size of jet

Q0

Mehtar-Tani
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Leading log branching
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Coherence
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λ⊥ 

1
k⊥

< r⊥  τ fθqq 
ω
k⊥
2 θqq ⇒ θ <θqqAngular ordering in vacuum:
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Color coherence
Decoherence parameter

BDMPS-Z: Single emission
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18

Hao Ma
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Multiple radiation
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F. Dominguez
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Scale matters
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Virtuality Q2 of the parton in the medium 
controls physics of radiative energy loss:  

Q2 (L) ≈ max q̂ L, E
L

⎛
⎝⎜

⎞
⎠⎟

medium vacuum

RHIC:  20 GeV parton, L = 3 fm

Virtuality of primary parton is 
medium influenced and small 
enough to “experience” the 
strongly coupled medium

LHC:  200 GeV parton, L = 3 fm

q̂ L ≈ 3.5 GeV2 < E
L
≈13 GeV2

Virtuality of primary parton is 
vacuum dominated and only 
its gluon cloud “experiences” 
the strongly coupled medium

Weak coupling scenario

q̂ L ≈1.5GeV2 ≈ E
L
≈1.5GeV2
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Three scales

23

Intrinsic virtuality (uncertainty relation): Qint =
z(1− z)E

L

Virtuality of the medium: Qmed = q̂L

Scale of transverse jet size: Qtrans =
1
θL
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HT formalism
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Less trigger bias
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UE subtraction (ATLAS)
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UE subtraction (CMS)
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Jet reconstruction
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Cacciari

Potential role for JET Collaboration to develop “standard approach” ?
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Jet observables proliferate
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 Jet RAA , RCP

 versus pT, centrality, in-plane, out-of-plane
 Di-jet asymmetry

 AJ, pT2/pT1
 γ-jet, Z-jet coincidences
 Jet “fragmentation” function D(z·pT,jet)

 Near side, away side
 γ-jet fragmentation function D(z·pT,γ)
 Jet shape ET(θ)
 Jet chemistry
 Anything not yet thought of.....
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Jet MC models
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K. Tywoniuk
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Hadronization
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S. Caron-Huot
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Interference
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S. Caron-Huot
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Parton shower in matter
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   Guangyou Qin & BM
PRL 106, 162302 (2011)

“Jet collimation”

Removes mostly
low-z gluons 
from jet cone
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Boltzmann transport
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LPM modified gluon radiation:

Linearized Boltzmann transport (XN Wang et al.)

Nonlinear Boltzmann transport using VNI/BMS parton cascade (C. Coleman-Smith)

Allows for simulations of time-dependent energy deposition accounting for both,
collisional (elastic) and radiative (inelastic) energy loss.

It would be useful to compare the predictions of the two codes in detail for 
standardized cases. Do they agree?
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Energy loss
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AMY formalism
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C. Young
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Fragmentation functions
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Di-jets versus Photon (Z) triggered jets
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AJ is “easy”
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dN/dAJ  in sPHENIX Jet FF in sPHENIX

Buzatti

Running coupling important Running coupling important
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G. Qin
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C. Coleman-Smith (preliminary)

correct shape, quantitative agree-
ment needs to be checked for
PHENIX specific kinematic cuts

WARNING: Enhancements in medium
modified FF’s are seen for pT < 4 GeV/c,
in a pT range, were hadron production
is complex mixture of fragmentation,
recombination, statistical production!
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γ-jet coincidences
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XN Wang et al.
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Medium response
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Y. Tachibana
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Concluding thoughts
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 Parton transport in QCD medium and jet modification by a 
QCD medium are complicated processes.

 Why do we need to understand them?
 What do we expect to learn in the end that’s worth the great 

theoretical (and experimental) effort?
 Are we aiming for qualitative or quantitative insights?
 What are the quantities that can be “measured”?

 qhat, ehat, what else?
 What physics do we learn from them?

 Which precision can we hope to aim for?
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Considerations

 How do we ascertain the correctness of complex codes?
 How do we check that we calculate what the experiments 

measure?
 How do we match perturbative and nonperturbative physics?
 Which observables are most sensitive to the quantities we 

are interested in, and least sensitive to physics we do not 
have under good control?
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