Total, elastic and diffractive cross-sections with TOTEM

Jan Kašpar on behalf of the TOTEM collaboration

MPI@LHC 2012, CERN, 4 December, 2012

TOTEM physics programme

Soft and hard diffraction

part I

Elastic scattering and Total cross-section

optical theorem

Three methods for total cross-section

elastic observables only:

$$\sigma_{\text{tot}}^{2} = \frac{16\pi}{1+\varrho^{2}} \frac{1}{\mathcal{L}} \frac{dN_{\text{el}}}{dt}\Big|_{0}$$

$$\sigma_{\text{tot}}$$

$$\sigma_{\text{tot}} = \frac{1}{\mathcal{L}} (N_{\text{el}} + N_{\text{inel}})$$

$$\sigma_{\text{tot}} = \frac{16\pi}{1+\varrho^{2}} \frac{dN_{\text{el}}/dt|_{0}}{N_{\text{el}} + N_{\text{inel}}}$$

ingredients

- elastic rate
 ⇒ Roman Pot detectors
- inelastic rate
 ⇒ telescopes T1 and T2
- luminosity
 ⇒ provided by CMS

• $\varrho \equiv \frac{\text{Re } A_{\text{el}}}{\text{Im } A_{\text{el}}} \Big|_{t=0}$ \Rightarrow from COMPETE extrapolation Detector apparatus

 $\leftarrow \text{ telescopes T1 and T2} \\ charged particles from \\ inelastic collisions \\ \text{T1: } 3.1 < |\eta| < 4.7 \\ \text{T2: } 5.3 < |\eta| < 6.5 \\ \end{cases}$

← Roman Pots at the LHC *elastic and diffractive protons*

- all detectors symmetrically on both sides of IP5
- all detectors trigger-capable

Proton measurement with Roman Pots

• optics defines what and how can be observed:

the same sample of elastic events seen with different optics:

• this presentation: optics $\beta^* = 90$ m used (almost) everywhere

Elastic scattering measurement

1. Kinematics reconstruction

• proton tracks in RPs \longrightarrow proton kinematics at IP

2. Elastic tagging

- elastic event = 2 anti-collinear protons from the same vertex ⇒ compare left and right reconstructed protons
- each proton $\xi \approx 0 \Rightarrow$ correlation hit position vs. track angle at RPs

3. Acceptance corrections

- RP sensors have finite size, LHC apertures
- azimuthal symmetry ⇒ geometrical correction (+ smearing around edges)

4. Unfolding of resolution effects

- angular resolution from data (compare left and right protons)
- Monte Carlo ⇒ impact on *t*-distribution

5. Inefficiency corrections

- uncorrelated one-RP inefficiencies
- near-far correlated RP inefficiencies
- "pile-up" = elastic event + another track in a RP

6. Luminosity

• from CMS (if available), uncertainty $\approx 4\%$

Elastic scattering results

⁽CMS luminosity unavailable)

Total cross-section results

inelastic rate measurement: see Giuseppe Latino's talk (on Monday)

TOTEM results in context

• outlook: successful data-taking with $\beta^* = 1000$ m optics – goal: ϱ determination

Optics for diffractive studies

- $|\xi|_{\min} = 0\% \Rightarrow \text{low masses}$
- ξ-resolution
 - RPs only: (0.4 to 1)% (*t*-dependent)
- with CMS vertex: $\approx 2 \times$ better

used in 2012

- $|\xi|_{\min} = 2.8\% \Rightarrow$ higher masses
- ξ -resolution - RPs only: $\approx 0.2\%$

planned after long shutdown

Double-pomeron exchange

• available data

 $-\sqrt{s} = 7$ TeV, $β^* = 90$ m, TOTEM alone: analysis ongoing $-\sqrt{s} = 8$ TeV, $β^* = 90$ m, TOTEM+CMS: analysis ongoing (CMS trigger: di-jets with $p_T > 20$ GeV)

- measurement with RPs only
 - integrate over all $\xi \Rightarrow$ determine |t|-distribution
 - extrapolate *t*-distribution \Rightarrow integrated DPE cross-section
- measurement with CMS
 - double determination of diffractive-system mass: RPs (both sides!) and CMS
 - goals: cross-sections and exceptional-event search

Single diffraction

• available data

 $-\sqrt{s} = 7$ TeV, $\beta^* = 90$ m: analysis ongoing $-\sqrt{s} = 8$ TeV, $\beta^* = 90$ m (TOTEM + CMS)

• event topologies \Rightarrow mass classes

mass	ξ region	proton side	opposite side
low mass	$\xi < 10^{-6}$	nothing	T2 only
medium mass	$10^{-6} < \xi < 0.25\%$	nothing	T1 and T2
high mass	$0.25\% < \xi < 2.5\%$	T1 only	T1 and T2
very high mass	$\xi < 2.5\%$	T1 and T2	T1 and T2

- double measurement of ξ :
 - RPs + optics
 - rapidity gap in T1/T2
- goals: integrated and differential SD cross-sections

Double diffraction

• available data

 $-\sqrt{s} = 7$ TeV, $\beta^* = 90$ m: analysis ongoing $-\sqrt{s} = 8$ TeV, $\beta^* = 90$ m

• trigger types – T1 and T2: dominated by $MB \Rightarrow$ background estimation

- T2 but not T1: sensitive to DD
- goals
 - integral cross-section
 - differential cross-section (as function of η_{min})