Total, elastic and diffractive cross-sections with TOTEM

Jan Kašpar
on behalf of the TOTEM collaboration

MPI@LHC 2012, CERN, 4 December, 2012

part I

Elastic scattering and Total cross-section

ingredients

- elastic rate
\Rightarrow Roman Pot detectors
- inelastic rate
\Rightarrow telescopes T1 and T2
- luminosity
\Rightarrow provided by CMS
- $\left.\varrho \equiv \frac{\operatorname{Re} \mathcal{A}_{\mathrm{el}}}{\operatorname{Im} \mathcal{A}_{\mathrm{el}}}\right|_{t=0}$
\Rightarrow from COMPETE
extrapolation

\leftarrow telescopes T1 and T2 charged particles from inelastic collisions

$$
\text { T1: } 3.1<|\eta|<4.7
$$

T2: $5.3<|\eta|<6.5$
\leftarrow sector $4 5 \longdiv { \text { sector } 5 6 \rightarrow }$

- all detectors symmetrically on both sides of IP5
- all detectors trigger-capable

- optics defines what and how can be observed:
the same sample of elastic events seen with different optics:

- this presentation: optics $\beta^{*}=90 \mathrm{~m}$ used (almost) everywhere

1. Kinematics reconstruction

- proton tracks in RPs inverse optics proton kinematics at IP

2. Elastic tagging

- elastic event $=2$ anti-collinear protons from the same vertex \Rightarrow compare left and right reconstructed protons
- each proton $\xi \approx 0 \Rightarrow$ correlation hit position vs. track angle at RPs

3. Acceptance corrections

- RP sensors have finite size, LHC apertures
- azimuthal symmetry \Rightarrow geometrical correction (+ smearing around edges)

4. Unfolding of resolution effects

- angular resolution from data (compare left and right protons)
- Monte Carlo \Rightarrow impact on t-distribution

5. Inefficiency corrections

- uncorrelated one-RP inefficiencies
- near-far correlated RP inefficiencies
- "pile-up" = elastic event + another track in a RP

6. Luminosity

- from CMS (if available), uncertainty $\approx 4 \%$

$$
\sqrt{\mathrm{s}}=7 \mathrm{TeV}
$$

[EPL 96 (2011) 21002, CERN-PH-EP-2012-239]

$$
\sqrt{\mathrm{s}}=8 \mathrm{TeV}
$$

[CERN-PH-EP-2012-354]

(CMS luminosity unavailable)
inelastic rate measurement: see Giuseppe Latino's talk (on Monday)

$$
\begin{gathered}
\sqrt{\mathrm{s}}=7 \mathrm{TeV} \\
\text { [CERN-PH-EP-2012-353] }
\end{gathered}
$$

elastic observables only:
$\sigma_{\text {tot }}^{2}=\left.\frac{16 \pi}{1+\varrho^{2}} \frac{1}{\mathcal{L}} \frac{\mathrm{~d} N_{\mathrm{el}}}{\mathrm{d} t}\right|_{0}$
$\sigma_{\text {tot }}=(98.6 \pm 2.3) \mathrm{mb}$

Q-independent:

$$
\begin{array}{ll}
\sigma_{\text {tot }}=\frac{1}{\mathcal{L}}\left(N_{\mathrm{el}}+N_{\text {inel }}\right) & \sigma_{\text {tot }}=\frac{16 \pi}{1+\varrho^{2}} \frac{\mathrm{~d} N_{\mathrm{el}} /\left.\mathrm{d} t\right|_{0}}{N_{\mathrm{el}}+N_{\text {inel }}} \\
\sigma_{\text {tot }}=(99.1 \pm 4.4) \mathrm{mb} & \sigma_{\text {tot }}=(98.1 \pm 2.4) \mathrm{mb}
\end{array}
$$

$$
\sqrt{s}=8 \mathrm{TeV}
$$

[CERN-PH-EP-2012-354]
elastic observables only:

$$
\sigma_{\text {tot }}^{2}=\left.\frac{16 \pi}{1+\varrho^{2}} \frac{1}{\mathcal{L}} \frac{\mathrm{~d} N_{\mathrm{el}}}{\mathrm{~d} t}\right|_{0}
$$

luminosity-independent:

$$
\begin{aligned}
& \sigma_{\text {tot }}=\frac{16 \pi}{1+\varrho^{2}} \frac{\mathrm{~d} N_{\mathrm{el}} /\left.\mathrm{d} t\right|_{0}}{N_{\mathrm{el}}+N_{\text {inel }}} \\
& \sigma_{\text {tot }}=(101.7 \pm 2.9) \mathrm{mb}
\end{aligned}
$$

(CMS luminosity unavailable)

- outlook: successful data-taking with $\beta^{*}=1000 \mathrm{~m}$ optics - goal: ϱ determination

Optics for diffractive studies

$$
\beta^{*}=90 \mathrm{~m}
$$

- optical functions at RP 220:

$$
L_{x} \approx 0, \quad L_{y} \approx \underset{\downarrow}{260 \mathrm{~m}, \quad D_{x} \approx 4 \mathrm{~cm}} \begin{gathered}
\Downarrow
\end{gathered}
$$

diffractive protons in vertical RPs
(a DPE sample)

- $|\xi|_{\text {min }}=0 \% \Rightarrow$ low masses
- $\check{\xi}$-resolution
- RPs only: (0.4 to 1)\% (t-dependent)
- with CMS vertex: $\approx 2 \times$ better
low β^{*} (0.7 m here)
- optical functions at RP 220:

$$
L_{x} \approx 1.7 \mathrm{~m}, \quad L_{y} \approx 14 \mathrm{~m}, \quad D_{x} \approx 8 \mathrm{~cm}
$$

diffractive protons in horizontal RPs
(a DPE sample)

- $|\xi|_{\min }=2.8 \% \Rightarrow$ higher masses
- ξ-resolution
- RPs only: $\approx 0.2 \%$
planned after long shutdown

Double-pomeron exchange

- available data
$-\sqrt{s}=7 \mathrm{TeV}, \beta^{*}=90 \mathrm{~m}$, TOTEM alone: analysis ongoing
$-\sqrt{s}=8 \mathrm{TeV}, \beta^{*}=90 \mathrm{~m}$, TOTEM+CMS: analysis ongoing (CMS trigger: di-jets with $p_{\mathrm{T}}>20 \mathrm{GeV}$)
- measurement with RPs only
- integrate over all $\xi \Rightarrow$ determine $|t|$-distribution
- extrapolate t-distribution \Rightarrow integrated DPE cross-section
- measurement with CMS
- double determination of diffractive-system mass: RPs (both sides!) and CMS
- goals: cross-sections and exceptional-event search

- available data
$-\sqrt{s}=7 \mathrm{TeV}, \beta^{*}=90 \mathrm{~m}$: analysis ongoing
$-\sqrt{s}=8 \mathrm{TeV}, \beta^{*}=90 \mathrm{~m}(\mathrm{TOTEM}+\mathrm{CMS})$
- event topologies \Rightarrow mass classes

mass	ξ region	proton side	opposite side
low mass	$\xi<10^{-6}$	nothing	T2 only
medium mass	$10^{-6}<\xi<0.25 \%$	nothing	T1 and T2
high mass	$0.25 \%<\xi<2.5 \%$	T1 only	T1 and T2
very high mass	$\xi<2.5 \%$	T1 and T2	T1 and T2

- double measurement of ξ :
- RPs + optics
- rapidity gap in T1/T2
- goals: integrated and differential SD cross-sections

Double diffraction

RP

- available data
$-\sqrt{s}=7 \mathrm{TeV}, \beta^{*}=90 \mathrm{~m}$: analysis ongoing
$-\sqrt{s}=8 \mathrm{TeV}, \beta^{*}=90 \mathrm{~m}$
- trigger types
- T1 and T2: dominated by MB \Rightarrow background estimation
- T2 but not T1: sensitive to DD
- goals
- integral cross-section
- differential cross-section (as function of $\eta_{\text {min }}$)

