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• quarkonium and its relevance 
hadronic physics

•experimental/theoretical challenges 
and  opportunities

• the  state of the art theory tools and 
their impact on hadronic physics
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We have still a limited control on how 
hadronic properties are generated by QCD 



Quarkonium is a privileged 
window over the hadronic world 
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Heavy quarkonia are nonrelativistic bound 
systems: multiscale systems

Electromagnetic bound states: atoms, molecules,

Heavy quarks offer a privileged access to the strong 

sector of the Standard Model

Q

v

q

heavy light meson: HQET
only two scales exist                andm ΛQCD

A large scale αs(mQ) ! 1mQ ! ΛQCD

Q̄

Q

v

r

Quarkonium: nonrelativistic 

multiscale system 

m mv ∼ r
−1

mv
2

ΛQCD

v ! 1 → m # mv # mv
2

many scales: a challenge and an opportunity
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The rich structure of separated energy scales makes 
quarkonium an ideal probe of confinement/deconfinementQuarkonium as a confinement and deconfinement probe

It is precisely the rich structure of separated energy scales that makes quarkonium an
ideal probe of confinement and deconfinement.

• The different quarkonium radii provide different measures of the transition from a
Coulombic to a confined bound state.

V  (r)
(0)

(GeV)

2

1

0

-1

1 2 r(fm)

! ! !

" # #

!

 2$ #c

ΛQCD

Low lying QQ̄ High lying QQ̄

◦ Godfrey Isgur PRD 32(85)189

• Different quarkonia will dissociate in a medium at different temperatures, providing
a thermometer for the plasma.

◦ Matsui Satz PLB 178(86)416

At zero temperature 

quarkonia probe the perturbative (high energy)  and non 
perturbative region (low energy)  as well as the transition 

region in dependence of their radius r
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Many experimental data and opportunities

New theoretical tools: 
Effective Field Theories  (EFTs) of QCD

and progress in lattice QCD
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n=2

Coulomb bb cc

n=4

linear

n=3

n=5

n=6

bbar and ccbar energy levels in comparison to 
Coulomb and linear potential energy levels

quarkonium is an ideal system to study qcd

n=2

Coulomb bb cc

n=4

linear

n=3

n=5

n=6

bbar and ccbar energy levels in comparison to 
Coulomb and linear potential energy levels

Eichten et al . 75, 78, 80
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V = σr

V = −

4

3

αs

r

r = QQ̄ radius

Confinement and asymptotic freedom--> QCD
Variety of potential models used  

QCD theory of Quarkonium: a very hard problem

Initial phenomenological/model descriptions of the 70s,80s
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Quarkonium with NR EFT: pNRQCD
strongly 
coupled 
pNRQCD

weakly 
coupled 
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Caswell, Lepage 86,
 Lepage, Thacker 88

                      Bodwin, Braaten, Lepage 95......

Quarkonium with EFTEFTs for Quarkonium

Caswell, Lepage 86,

 Lepage, Thacker 88

                      Bodwin, Braaten, Lepage 95......

Pineda, Soto 97, N.B. et al, 99,00,

Luke Manohar 97, Luke Savage 98, 

Beneke Smirnov 98, Labelle 98

Labelle 98, Grinstein Rothstein 98

Kniehl, Penin 99, Griesshammer 00,

 Manohar Stewart 00, Luke et al 00,

 Hoang et al 01, 03->established in a series of papers:
Pineda, Soto 97, N.B., Pineda, Soto, Vairo 99

N.B. et al 00--013
N.B., Pineda, Soto, Vairo Review of Modern Physis 77(2005) 

1423
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Quarkonium production and Decays 

Physics at the scale mv and mv^2 : pNRQCD  
bound state formation 

pNRQCD is today the theory used to address 
quarkonium bound states properties
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The EFT is being constructed  (Finite T)

*Results on the static potential hint at a new physical picture of dissociation

*Mass and width of quarkonium  at m alpha^5(Y(1S) bbar at LHC)

*Polyakov loop calculation
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only in particular cases  (X(3872)) a universal treatment is possible
E.  Braaten et al 

The eft allows us to discover new, unexpected and important facts: 

•The potential is neither the color singlet  free energy nor the  internal energy

•The quarkonium dissociation is a consequence of the apparence of a thermal decay 
width rather than being  due to the color screening of the real part of the potential 

We have now a coherent and systematical setup to calculate masses and 
width of quarkonium at finite T for small coupling
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QCD

(Weakly coupled) pNRQCD Lagrangian for QQ̄

• If mv ! ΛQCD, the matching is perturbative

• Degrees of freedom: quarks and gluons

Q-Q̄ states, with energy ∼ ΛQCD, mv2 and momentum <
∼ mv

⇒ (i) singlet S (ii) octet O

Gluons with energy and momentum ∼ ΛQCD, mv2

• Definite power counting: r ∼
1

mv
and t, R ∼

1

mv2
, 1

ΛQCD

The gauge fields are multipole expanded:
A(R, r, t) = A(R, t) + r · ∇A(R, t) + . . .

Non-analytic behaviour in r → matching coefficients V
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pNRQCD

pNRQCD provides a QM description from field theory: the Schroedinger 
equation and the potentials appear once all scales above the binding energy 
have been integrated out

The EFT accounts for non-potential terms as well. They provide loop 
corrections to the leading potential picture. Retardation effects are typically 
related to the nonperturbative physics

The Quantum Mechanical divergences are cancelled by the NRQCD 
matching coefficients.

Poincare’ invariance is intact and is realized via exact relations among the 
matching coefficients (potentials)



QCD  singlet static potential 

The potential is a Wilson coefficient of an EFT. 
In general, it  undergoes renormalization, develops scale

dependence and satisfies renormalization
group equations, which allow to resum large logarithms.
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Quarkonium singlet static potential at N^4LO
The static potential at N4LO
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Two problems:
1)Bad convergence of the series due to large beta_0 terms

2) Large logs
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Two problems:
1)Bad convergence of the series due to large beta_0 terms

2) Large logs

The eft  cures both:
1) Renormalon subtracted scheme 

2) Renormalization group summation of the logs

up to N^3LL (α4+n
s lnn αs)

                                      Pineda, Soto,   N. B. , X.  Garcia, Soto, Vairo  . et al 
2007, 2009

Beneke 98, Hoang, Lee 99, Pineda 01, n.brambilla et 
al 09

for long it was believed  that such series was not convergent

problem for any phenomenological application
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• Very good convergence of the QCD bound state perturbative series

• The lattice data  are perfectly  described from perturbation 
theory up to more than 0.2 fm

•Allows to rule out models: no string contribution at small r !

• Allows precise extraction of fundamental parameters of QCD

 N. Brambilla, Garcia, Soto, Vairo 010)r0ΛM̄S = 0.622+0.019
−0.015
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αs extraction

ρ = 3.14r−1
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Bazanov, N. B., Garcia, Petreczky, Soto, Vairo , 2012

αs(ρ = 1.5GeV, nf = 3) = 0.326± 0.019

αs(Mz, nf = 5) = 0.1156+0.0021
−0.0022

We obtain an extraction of alphas at N^3LO plus leading log resummation
at the lowest energy scale (at the m_c mass)!

corresponding to



Applications to Quarkonium physics: 
systems with small radius 

for  references see the QWG doc 
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entirely determined by the quark anomalous mag-
netic moment. Since the quark magnetic moment
appears at the scale m, it is accessible by pertur-
bation theory: κQ = 2αs(m)/(3π) + O(αs

2). As a
consequence, κQ is a small positive quantity, about
0.05 in the bottomonium case and about 0.08 in the
charmonium one. This is confirmed by lattice cal-
culations [423] and by the analysis of higher-order
multipole amplitudes (see Sect. 3.1.6).

• QCD does not allow for a scalar-type contribution
to the magnetic transition rate. A scalar interac-
tion is often postulated in phenomenological mod-
els.

The above conclusions were shown to be valid at any
order of perturbation theory as well as nonperturbatively.
They apply to magnetic transitions from any quarkonium
state. For ground state magnetic transitions, we expect
that perturbation theory may be used at the scale mv.
Under this assumption, the following results were found
at relative order v2.

• The magnetic transition rate between the vector
and pseudoscalar quarkonium ground state, includ-
ing the leading relativistic correction (parametrized
by αs at the typical momentum-transfer scale
miαs/2) and the leading anomalous magnetic mo-
ment (parametrized by αs at the mass scale mi/2),
reads
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in which i = 1301 and f = 1101. This expression
is not affected by nonperturbative contributions.
Applied to the charmonium and bottomonium case
it gives: B(J/ψ → γηc(1S)) = (1.6 ± 1.1)%
(see Sect. 3.1.2 for the experimental situation) and
B(Υ(1S) → γηb(1S)) = (2.85 ± 0.30) × 10−4 (see
Sect. 3.1.8 for some experimental perspectives).

• A similar perturbative analysis, performed for hin-
dered magnetic transitions, mischaracterizes the
experimental data by an order of magnitude, point-
ing either to a breakdown of the perturbative ap-
proach for quarkonium states with principal quan-
tum number n > 1, or to large higher-order rela-
tivistic corrections.

The above approach is well suited to studying the line-
shapes of the ηc(1S) and ηb(1S) in the photon spectra of
J/ψ → γηc(1S) and Υ(1S) → γηb(1S), respectively. In
the region of Eγ $ mαs, at leading order, the lineshape

is given by [424]
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which has the characteristic asymmetric behavior around
the peak seen in the data (compare with the discussion
in Sect. 3.1.2).

No systematic analysis is yet available for relativis-
tic corrections to electromagnetic transitions involving
higher quarkonium states, i.e., states for which ΛQCD

is larger than the typical binding energy of the quarko-
nium. These states are not described in terms of a
Coulombic potential. Transitions of this kind include
magnetic transitions between states with n > 1 and all
electric transitions, n = 2 bottomonium states being on
the boundary. Theoretical determinations rely on phe-
nomenological models, which we know do not agree with
QCD in the perturbative regime and miss some of the
terms at relative order v2 [407]. A systematic analysis
is, in principle, possible in the same EFT framework de-
veloped for magnetic transitions. Relativistic corrections
would turn out to be factorized in some high-energy coef-
ficients, which may be calculated in perturbation theory,
and in Wilson-loop amplitudes similar to those that en-
code the relativistic corrections of the heavy quarkonium
potential [174]. At large spatial distances, Wilson-loop
amplitudes cannot be calculated in perturbation theory
but are well-suited for lattice measurements. Realizing
the program of systematically factorizing relativistic cor-
rections in Wilson-loop amplitudes and evaluating them
on the lattice, would, for the first time, produce model-
independent determinations of quarkonium electromag-
netic transitions between states with n > 1. These are
the vast majority of transitions observed in nature.

Higher-order multipole transitions have been observed
in experiments (see Sect. 3.1.6), Again, a systematic
treatment is possible in the EFT framework outlined
above, but has not yet been realized.

3.1.2. Study of ψ(1S, 2S) → γηc(1S)

Radiative transitions in the charmonium system have
recently been explored using both lattice QCD [423] and
effective field theory techniques [407]. Key among these
are the magnetic dipole (M1) transitions J/ψ → γηc(1S)
and ψ(2S) → γηc(1S). Using a combination of inclusive
and exclusive techniques, CLEO [69] has recently mea-
sured

B(J/ψ → γηc(1S)) = (1.98 ± 0.09 ± 0.30)%

B(ψ(2S) → γηc(1S)) = (0.432± 0.016 ± 0.060)% , (99)

reducing the discrepancy between experiment and pre-
dictions from the nonrelativistic quark model [31]. The
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TABLE 23: Comparison of measured χcJ decay-width ra-
tios (using PDG08 [18] and its online update for 2009) with
LO and NLO determinations, assuming mc = 1.5 GeV and
αs(2mc) = 0.245, but without corrections of relative order v2.
LH ≡ light hadrons

Ratio PDG LO NLO

Γ(χc0 → γγ)
Γ(χc2 → γγ)

4.9 3.75 5.43

Γ(χc2 → LH) − Γ(χc1 → LH)
Γ(χc0 → γγ)

440 347 383

Γ(χc0 → LH) − Γ(χc1 → LH)
Γ(χc0 → γγ)

4000 1300 2781

Γ(χc0 → LH) − Γ(χc2 → LH)
Γ(χc2 → LH) − Γ(χc1 → LH)

8.0 2.75 6.63

Γ(χc0 → LH) − Γ(χc1 → LH)
Γ(χc2 → LH) − Γ(χc1 → LH)

9.0 3.75 7.63

matrix elements is to go to the lower-energy EFT, pN-
RQCD, and to exploit the hierarchy mv ! mv2. In
pNRQCD, NRQCD matrix elements factorize into two
parts: one, the quarkonium wave-function or its deriva-
tive at the origin, and the second, gluon-field correlators
that are universal, i.e., independent of the quarkonium
state. The pNRQCD factorization has been exploited for
P-wave and S-wave decays in [176].

Quarkonium ground states have typical binding en-
ergy larger than or of the same order as ΛQCD. Matrix
elements of these states may be evaluated in perturba-
tion theory with the nonperturbative contributions being
small corrections encoded in local or nonlocal conden-
sates. Many higher-order corrections to spectra, masses,
and wave functions have been calculated in this man-
ner [152], all of them relevant to the quarkonium ground
state annihilation into light hadrons and its electromag-
netic decays. For some recent reviews about applica-
tions, see [445, 446]. In particular, Υ(1S), ηb(1S), J/ψ,
and ηc(1S) electromagnetic decay widths at NNLL have
been evaluated [248, 447]. The ratios of electromagnetic
decay widths were calculated for the ground state of char-
monium and bottomonium at NNLL order [447], finding,
e.g.,

Γ(ηb(1S) → γγ)

Γ(Υ(1S) → e+e−)
= 0.502± 0.068 ± 0.014 . (107)

A partial NNLL-order analysis of the absolute widths of
Υ(1S) → e+e− and ηb(1S) → γγ can be found in [248].

As the analysis of Γ(Υ(1S) → e+e−) of [248] illus-
trates, for this fundamental quantity there may be prob-
lems of convergence of the perturbative series. Prob-
lems of convergence are common and severe for all the
annihilation observables of ground state quarkonia and

may be traced back to large logarithmic contributions, to
be resummed by solving suitable renormalization group
equations, and to large β0αs contributions of either re-
summable or nonresummable nature (these last ones are
known as renormalons). Some large β0αs contributions
were successfully treated [448] to provide a more reliable
estimate for

Γ(ηc(1S) → LH)

Γ(ηc(1S) → γγ)
= (3.26 ± 0.6) × 103 , (108)

or (3.01 ± 0.5)× 103 in a different resummation scheme.
A similar analysis could be performed for the ηb(1S),
which combined with a determination of Γ(ηb(1S) → γγ)
would then provide a theoretical determination of the
ηb(1S) width. At the moment, without any resummation
or renormalon subtraction performed,

Γ(ηb(1S) → LH)

Γ(ηb(1S) → γγ)
$ (1.8–2.3) × 104 . (109)

Recently a new resummation scheme has been suggested
for electromagnetic decay ratios of heavy quarkonium
and applied to determine the ηb(1S) decay width into
two photons [449]:

Γ(ηb(1S) → γγ) = 0.54 ± 0.15 keV . (110)

Substituting Eq. (110) into Eq. (109) gives Γ(ηb(1S) →
LH) = 7-16 MeV.

3.2.2. Measurement of ψ, Υ → γgg

In measurements of the γgg rate from J/ψ [223],
ψ(2S) [224], and Υ(1S, 2S, 3S) [218], CLEO finds that
the most effective experimental strategy to search for
γgg events is to focus solely upon those with energetic
photons (which are less prone to many backgrounds),
then to make the inevitable large subtractions of ggg,
qq̄, and transition backgrounds on a statistical basis,
and finally to extrapolate the radiative photon energy
spectrum to zero with the guidance of both theory and
the measured high energy spectrum. The most trouble-
some background remaining is from events with energetic
π0 → γγ decays which result in a high-energy photon in
the final state. One of several methods used to estimate
this background uses the measured charged pion spectra
and the assumption of isospin invariance to simulate the
resulting photon spectrum with Monte Carlo techniques;
another measures the exponential shape of the photon-
from-π0 distribution at low photon energy, where γgg de-
cays are few, and extrapolates to the full energy range.
Backgrounds to γgg from transitions require the input of
the relevant branching fractions and their uncertainties.
The rate for ggg decays is then estimated as that fraction
of decays that remains after all dileptonic, transition, and
qq̄ branching fractions are subtracted, again requiring in-
put of many external measurements and their respective
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Brambilla Pineda Soto Vairo 00

• A potential description emerges from the EFT

• The potentials V = ReV + ImV

       
 from QCD in the matching:

get spectra and decays 
• V to be calculated on the lattice or in QCD vacuum models
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• Singlet states described by the long tails of the potentials in pNRQCD:

V = V0 +
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(VSD + VV D)

•Lattice calculations of the pNRQCD  potentials

•Exact relations among the potentials from the EFT

•QCD vacuum calculation of the potential (need only one assumption on the Wilson loop 

Quarkonium singlet static potential 

Potentials are given in a factorized form as product of 
NRQCD matching coefficients and low energy terms. These are  

gauge  invariant wilson loop with electric and magnetic insertions



 QCD Spin dependent potentials  



 QCD Spin dependent potentials  

 -factorization; power counting; 
QM divergences absorbed by 
NRQCD matching coefficients



 Spin dependent potentials  



 Spin dependent potentials  

Such data can distinguish different models for the dynamics 
of low energy QCD



hc, hb

0

50

100

150

200

250

300

350

3.5 3.51 3.52 3.53 3.54 3.55
!0 recoil mass in GeV

Ev
en

ts
/2

 M
eV

ψ(2S) → π0hc → 3γηc

Mhc
= 3524.4 ± 0.6 ± 0.4 MeV ◦ CLEO PRL 95 (2005) 102003

Mhc
= 3525.8 ± 0.2 ± 0.2 MeV, Γ < 1 MeV ◦ E835 PRD 72 (2005) 032001

Mhc
= 3525.40 ± 0.13 ± 0.18 MeV, Γ < 1.44 MeV ◦ BES PRL 104 (2010) 132002

To be compared with Mc.o.g.(1P ) = 3525.36 ± 0.2 ± 0.2 MeV.

• Also
Mhb

= 9902 ± 4 ± 1 MeV ◦ BABAR arXiv:1102.4565
To be compared with Mc.o.g.(1P ) = 9899.87 ± 0.28 ± 0.31 MeV.

Confirmed in the spectrum, e.g. no long range spin-spin 
interaction 



Exact relations from Poincare’  invariance

The EFT is still Poincare’ invariant-> this induces   relations 
among the potentials

[G
eV

2 ]

r  [fm]

V0'(r)
  = 6.0
  = 6.3 

 
V2'(r) - V1'(r) 

  = 6.0
  = 6.3 

V
′

0(r) = V
′

2(r) − V
′

1(r)e. g.

Gromes relation

Koma and Koma 2006

It is a check  of the
 lattice calculation

many other relations among 
potentials in the EFT

Constraint on the spin-independent potentials I

A lattice determination of V (2,0)
L2 (r) + V (0,2)

L2 (r) − V (1,1)
L2 (r) +

r

2
V (0)′(r) = 0

◦ Koma Koma Wittig PoS LAT2007 (2007) 111

relations involving spin
 independent potentials 



 QCD Spin independent potentials  



 QCD Spin independent potentials  

field strength insertions under calculation on the lattice 
and in QCD vacuum models 



The low energy  physics is now factorized in Wilson 
loops: they can be calculated on the lattice, in QCD 

vacuum models, in string theory
they can be used to probe the confinement mechanism  



The low energy  physics is now factorized in Wilson 
loops: they can be calculated on the lattice, in QCD 

vacuum models, in string theory
they can be used to probe the confinement mechanism  

 chromoelectric  flux tube formation between the 
static quark-antiquark pair-> dual Meissner effect



The low energy  physics is now factorized in Wilson loops: 
they can be used to probe the confinement mechanism  
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understanding of the confinement 
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ConclusionsOutlookII

Nonrelativistic Effective  Field Theories provide a systematic tool 

to investigate a wide range of heavy quarkonium observables         

in the realm of  QCD

Allow us to make calculations with unprecented precision, 
where high order perturbative calculations are possible

and to systematically factorize short from long range 
contributions where observables are sentitive to the 

nonperturbative dynamics of QCD

 They allow us to give the appropriate definition and define a 
calculational scheme for quantities of huge 

phenomenological interest like the qqbar static energies and 
the qqbar potential at finite T

in the  EFT  framework heavy quark bound states become a unique 
laboratory for the study of strong interaction from  the high energy 

to the low energy scales



These theory tools can match some of the intense 
experimental  progress  of the last few years and 
of the near future

159

7.
CON

CLUSION
S
AN

D
PRIORITIES

Below
we

present
a

summary
of

the
most

crucial

developments in
each

of the major topics and
suggested

directions for further advancement.

Spectroscopy: An overview
of the last decade’s progress

in
heavy quarkonium

spectroscopy was given
in

Sect. 2.

W
ith

regard
to experimental progress, we conclude:

1. New
measurements

of
inclusive

hadronic
cross

sections
(i.e., R)

for e+
e−

collisions
just

above

open cc̄ and bb̄ flavor thresholds have enabled
im-

proved
determinations of some resonance parame-

ters but more precision and fine-grained studies are

needed
to

resolve
puzzles and

ambiguities.
Like-

wise, progress
has

been
made

studying
exclusive

open-flavor two-body
and

multibody
composition

in
these

regions, but
further

data
are

needed
to

clarify
the details.

Theory
has not yet been

able

to
explain

the measured
exclusive two-body

cross

sections.2. Successful observations were made
(Table

4) of 6

new
conventional heavy quarkonium

states (4 cc̄, 2

bb̄); of these, only
the ηb(1S) lacks a second, inde-

pendent 5σ
confirmation.

Improved
measurement

of ηc(1S) and ηc(2S) masses and
widths would

be

quite valuable. Unambiguous observations and pre-

cise mass and
width

measurements are needed
for

ηb(2S), hb( 1P
1), Υ(1 3D

1), and Υ(1 3D
3) in order to

constrain
theoretical descriptions.

3. Experimental evidence has been gathered (Table 9)

for up to 17 unconventional heavy quarkonium-like

states.
All but Yb(10888) are in

the charmonium

mass region, and
all but 5

remain
unconfirmed

at

the 5σ
level. Confirmation

or refutation
of the re-

maining 12 is a high
priority.

4. Theoretical interpretations for the unconventional

states
(Table

20) range
from

coupled-channel ef-

fects
to

quark-gluon
hybrids, mesonic

molecules,

and
tetraquarks. M

ore measurements and
theoret-

ical investigations are necessary to narrow
the pos-

sibilities.
In

particular, high-resolution
measure-

ments of lineshapes promise deeper insights into the

nature of various of those states.

5. The X
(3872) was the first unexpected

state to be

observed
and

has generated
the

most experimen-

tal and theoretical attention. Its sub-M
eV

proxim-

ity
to D ∗0D̄ 0

-threshold
(Tables 10-11) and

domi-

nant D 0D̄ 0π 0
branching fraction suggest a D ∗0D̄ 0

-

molecular component, although
this interpretation

is not universally
shared.

The X
(3872) has been

confirmed in four decay modes (Table 12). The dis-

covery mode, π +
π −

J/ψ, is still the best measured,

and has a branching fraction
comparable in

size to

that of ωJ/ψ; D 0D̄ 0π 0
is ten

times more common

and γJ/ψ
three times less. The X

(3872) quantum

numbers have been
narrowed

to 1++
or 2−+

.

6. The charged Z
states observed

in Z −
→ π −

ψ(2S)

and π −
χ
c1 would

be, if confirmed, manifestly
ex-

otic.
Hence their confirmation

or refutation
is of

the utmost importance.

W
ith

regard
to lattice QCD

calculations:

7. Lattice
QCD

technology
has

progressed
to

the

point
that

it
may

provide
accurate

calculations

of
the

energies
of

quarkonium
states

below
the

open flavor threshold, and also provide information

about higher states.

8. Precise and
definitive calculations of the cc̄ and bb̄

meson
spectra

below
threshold

are
needed.

Un-

quenching effects, valence quark annihilation chan-

nels
and

spin
contributions

should
be

fully
in-

cluded.9. Unquenched
calculations of states above the open-

flavor thresholds are needed. These would
provide

invaluable clues to the nature of these states.

10. The complete set of W
ilson loop field strength aver-

ages entering the definition
of the nonperturbative

QQ̄
potentials must be calculated

on
the lattice.

11. Calculations of local and
nonlocal gluon

conden-

sates on the lattice are needed as inputs to weakly-

coupled
pNRQCD

spectra and
decay calculations.

12. NRQCD
matching coefficients in the lattice scheme

at one loop
(or more) are needed.

13. Higher-order calculations of all the relevant quan-

tities due to
the lattice-to-MS

scheme change are

required
in

order to
relate

lattice
and

continuum

results in
the EFT.

14. Lattice calculations of the overlap between quarko-

nia and
heavy-light states in

the threshold
region,

as well as with
hybrids or exotic states, should

be

performed.
15. A

better determination
of the r0 lattice scale and

a nonperturbative determination
of Λ

MS with
2+1

or 2+1+1 sea quarks is needed.

W
ith

regard
to effective field

theories (EFTs),

16. Higher-order
perturbative

EFT
calculations

of

static
energies,

static
potentials,

and
relativis-

tic
corrections

to
the

potentials
and

energy
lev-

els
have

appeared
recently

for
different

heavy-

quark/antiquark
configurations. Further efforts in

this direction
are

needed, and
the

emerging
pat-

terns of renormalons should
be studied

in
relation

to
the

behavior of the
bound

states perturbative

series.
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31. It would be important to have a coherent EFT

treatment for all magnetic and electric transitions.

In particular, a rigorous treatment of the relativis-

tic corrections contributing to the E1 transitions

and a nonperturbative analysis of the M1 transi-

tions is missing. The first is relevant for transitions

involving P
states, the second for any transition

from above the ground state.

32. New resummation schemes for the perturbative ex-

pressions of the quarkonium decay widths should be

developed. At the moment, this is the major ob-

stacle to precise theoretical determinations of the

Υ(1S) and ηb (1S) inclusive and electromagnetic de-

cays (Sect. 3.2.1).

33. More
rigorous

techniques
to

describe
above-

threshold
quarkonium

decays
and

transitions,

whose descriptions still rely upon models, should

be developed (Sects. 3.3.1 and 3.4).

Production: The theoretical and experimental status

of production of heavy quarkonia was given in Sect. 4.

Conclusions and priorities are as follows:

34. It is very important either to establish that the

NRQCD factorization formula is valid to all orders

in perturbation theory or to demonstrate that it

breaks down at some fixed order.

35. A
more accurate treatment of higher-order cor-

rections to the color-singlet contributions at the

Tevatron and the LHC
is urgently needed. The

re-organization of the perturbation series that is

provided by the fragmentation-function approach

(Sect. 4.1.5) may be an important tool.

36. An outstanding theoretical challenge is the devel-

opment of methods to compute color-octet long-

distance NRQCD
production matrix elements on

the lattice.
37. If NRQCD factorization is valid, it likely holds only

for values of pT that are much greater than the

heavy-quark mass. Therefore, it is important for

experiments to make measurements of quarkonium

production, differentially in pT , at the highest pos-

sible values of pT .

38. Further light could be shed on the NRQCD veloc-

ity expansion and its implications for low-energy

dynamics by comparing studies of charmonium pro-

duction and bottomonium production. The higher

pT reach of the LHC may be particularly important

for studying bottomonium production at values of

pT that are much greater than the bottomonium

mass.39. It would be of considerable help in disentangling

the theoretical issues in production of J/ψ and Υ if

experimental measurements could separately quan-

tify direct and feeddown contributions. Ideally, the

direct production cross sections and polarizations

would both be measured differentially in pT .

40. It is important to resolve the apparent discrepancy

between the CDF and DØ measurements of the Υ

polarization, which were performed for different ra-

pidity ranges, |y| < 0.6 (CDF) and |y| < 1.8 (DØ).

A
useful first step would be for the two experi-

ments to provide polarization measurements that

cover the same rapidity range.

41. It would be advantageous to measure complete

quarkonium polarization information in a variety of

spin-quantization frames and to make use of frame-

invariant quantities to cross-check measurements in

different frames [722, 723, 1031]. Care should be

taken in comparing different polarization measure-

ments to insure that dependences on the choices of

frame and the kinematic ranges of the experiments

have been taken into account.

42. Measurements of inclusive cross sections, charmo-

nium
angular distributions, and polarization pa-

rameters for P -wave charmonium states would pro-

vide further important information about quarko-

nium production mechanisms.

43. Studies of quarkonium production at different val-

ues of √
s at the Tevatron and the LHC, studies of

hadronic energy near to and away from the quarko-

nium direction at the Tevatron and the LHC, and

studies of the production of heavy-flavor mesons in

association with a quarkonium at e+
e−

, ep, pp̄, and

pp machines could give information that is comple-

mentary to that provided by traditional observa-

tions of quarkonium production rates and polariza-

tions.44. Theoretical uncertainties in the region near the

kinematic endpoint of maximum
quarkonium

en-

ergy might be reduced through a systematic study

of resummations of the perturbative and velocity

expansions in both ep and e+
e−

quarkonium
pro-

duction.45. In predictions for exclusive and inclusive quarko-

nium
production in e+

e−
annihilation, large cor-

rections appear at NLO. An important step would

be to identify the origins of these large corrections.

It might then be possible to improve the conver-

gence of perturbation series by resumming specific

large contributions to all orders in α
s .

46. The central values of the Belle and BABAR measure-

ments of σ(e+
e−

→
J/ψ + ηc (1S)) × B

>2 , where

B
>2 is the branching fraction for the ηc (1S) to de-

cay into a final state with more than two charged

particles, differ by about twice the uncertainty of

In this direction go the list of 65 priorities 
given at the end of the QWG (Quarkonium 

Working Group) doc
arXiv:1010.5827
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Heating quarkonium systems  

T > 0



Quarkonium in a hot medium:  
the interaction potential



It was believed 
that the color 

screening
of the potential 

 originates quarkonium 
dissociation Matsui Satz 86

Debye charge screening 
(electromagnetic plasma)

V (r) ∼ −αs
e−mDr

r r ∼ 1
mD

Bound state
dissolves

Quarkonium in a hot medium:  
the interaction potential
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But, at finite temperature what is the quarkonium potential?

? and ΛQCD

four spacetime dimensions as

δL(φi) =

�

i

ci

Mdi−4
Oi, (1.22)

where Oi is an operator of dimension di > 4 and ci is the corresponding Wilson coeffi-

cient. It should be noted that even the parameters (couplings, massess, etc.) appearing

in L(φi) are not the same in the two regions, the difference given again by the matching

conditions.

Once the matching has been performed one can proceed further down in energy using

again the RG equation. It should be noted that the procedure we just sketched can

be perfectly iterated. Suppose that one of the light degrees of freedom, φj , as a mass

mj � mi, ∀i �= j: then one can repeat the previous steps, integrating out the field φj .

From this procedure we can understand that the EFT will clearly have the same IR

behavior of the starting theory but a different UV one.

1.3 NRQCD

We now concentrate on EFTs for heavy quarkonium systems. We remark that any non-

relativistic bound state develops a hierarchy of scales m � mv � mv2, where m is in

this case the heavy quark mass and v the velocity. Estimates for the physical systems of

charmonium and bottomonium give v2 ≈ 0.3 for the former and v2 ≈ 0.1 for the latter:

therefore a non-relativistic treatment is viable, but relativistic corrections need to be

considered, especially for charmonium. The scale of the m is called the hard scale, the

scale of the exchanged momentum mv is called the soft scale and the scale of the kinetic

energy mv2 is called the ultrasoft scale.
NonRelativistic QCD is then obtained by integrating out the hard scale m from the

QCD Lagrangian (1.1) with the methods of the previous section. In QCD there is

of course another intrinsic scale, ΛQCD: the position of this scale with respect to the

others will play an important role in the following section. In a non-relativistic system

energy and three-momentum scale differently; however for NRQCD we define a single

UV cut-off νNR = {νp, νs} satisfying m � νNR � ΛQCD, E, |p|. νp is the cut-off of the

relative spacial momenta |p| of the heavy quarks, νs is the cut-off of the energy E of the

heavy quarks and of the four-momenta of gluons and light quarks. Moreover the relation

nuNR � ΛQCD implies that the integration of the hard scale can be done perturbatively.

Once the integration has been performed heavy quark-antiquark pairs cannot be created

anymore so it is convenient to use non-relativistic Pauli spinors instead of Dirac spinors:

let then ψ(x) be the Pauli spinor field annihilating a heavy quark and χ(x) the one

creating a heavy antiquark. Furthermore if the quark-antiquark pair is of the same flavor

it can annihilate to hard gluons, which have been integrated out: in order to preserve

this physical aspects the NRQCD Lagrangian contains imaginary Wilson coefficients.

The NRQCD Lagrangian will thus be expressed as a power expansion in
1
m

2. Below the

2If the masses of the two quarks are different the expansion will be organized in powers of 1
ma

1mb
2
,

with a, b ≥ 0

14

Debye mass
Screening Scale

mD ∼ gT

T � gT � g2T . . .

The potential  V(r,T) dictates throught the Schroedinger equation the 
real time evolution  of the QQbar pair in the medium-> use the EFT 

to define and calculate it 
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and ΛQCD

Without heavy quarks an EFT already exists that 

comes from integrating out hard gluon of p \sim T: 

Hard Thermal Loop EFT

Braaten Pisarski  90 
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pNRQCD at finite T allows us to 
define the  static QQbar  potential

in the medium in real time
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•  The thermal part of the potential has a real and an imaginary part 

Landau damping 

ReVS (r,T)

Discovery from new EFT calculations:
Quarkonium potential has Real & Imaginary part 

octet transition

thermal breakup of a Q-Q ! 
color singlet into a color 
octet state and gluons

gluon self-energy, scattering 
of particles in the medium 

with space-like gluons
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Singlet-to-octet Landau damping
New effect, specific of QCD

dominates for E/m_D>>1

N. B., Ghiglieri,
 Petreczky, Vairo 2008

Known from QED
dominates for m_D/E>>1

Laine et al 2007

(dissociation via inelastic 
parton scattering) 

(gluo dissociation) 
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•  The imaginary part is bigger than the real part before the screening exp{-m_D r} 
sets in 

->the imaginary part is responsible for QQbar dissociation !

Static quark antiquark at T ! 1/r ! mD ! V

Divergences appear in the imaginary part of the potential at order αs

r
× (rmD)2 × (Tr).

They cancel in physical observables against loop corrections from lower energy scales.

We consider the case T " 1/r " mD " V . Integrating out mD from pNRQCDHTL

leads to an extra contribution δVs to the potential coming from

HTL propagator

Re δVs(r) ∼ g2r2T 3 ×
“mD

T

”3

Im δVs(r) = −
CF

6
αs r2 T m2

D

 

1

ε
− γE + ln π + ln

µ2

m2
D

+
5

3

!
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exponential screening but ImV � ReV

no exponential screening but 
power-like T corrections

 no corrections to the potential,
corrections to the energy 
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The bottomonium ground state at finite T

The relative size of non-relativistic and thermal scales depends on the medium and on
the quarkonium state.

The bottomonium ground state , which is a weakly coupled non-relativistic bound state:
mv ∼ mαs,mv2 ∼ mα2

s
>
∼

ΛQCD, produced in the QCD medium of heavy-ion collisions
at the LHC may possibly realize the hierarchy

m ≈ 5 GeV > mαs ≈ 1.5 GeV > πT ≈ 1 GeV > mα2
s ≈ 0.5 GeV >

∼
mD,ΛQCD
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techniques for bound state systems at finite temperature initiated in [1], in particular the application of dimensional
regularization to the factorization of the various scales in the system. They facilitate enormously the organisation
of the calculation. For instance, they make apparent when Coulomb or HTL resummations are necessary and when
they are not. In addition, both partial and final results are naturally obtained as a series of small scales over large
ones, thus providing a good control on the systematics.
We have discussed two cases. We have first addressed the academic case of muonic hydrogen with a vanishing

electron mass, which turns out to be closer to heavy quarkonium states than the actual case with a non-vanishing
electron mass, that we have addressed next. All the thermal modifications we have found turn out to be spin
independent.
In the zero electron mass case, we have studied how the effects of vacuum polarization modify the picture that we

encounter in normal hydrogen [1]. The modifications turn out to be important when the temperature is larger than
the binding energy. For instance, they would give the leading order contribution to a hypothetical Kα transition for
high enough temperatures (2). For temperatures below dissociation, we have presented the leading order, and selected
next-to-leading order, thermal corrections to the binding energy and decay width.
In the actual electron mass case, muonic hydrogen behaves very much the same as hydrogen for temperatures below

the electron mass. For temperatures larger or of the order of the electron mass the vacuum polarization effects are
sizable, and, at some point, make the bound states dissociate. We display in table I the dissociation temperature
for the lower laying states. We have also calculated the thermal modifications to a number of observables before
dissociation occurs. For instance, we plot the dependence of the Kα transition on temperature in fig. 8, which could
be tested experimentally in the future [8].
We close with a concrete application to the heavy quarkonium case. As we have mentioned before, the way a finite

electron mass affects muonic hydrogen is similar to the way a finite charm quark mass affects bottomonium [40].
Since this should also be the case at finite temperature, we can easily translate to the QCD case the results for the
dissociation temperature of muonic hydrogen, which we show in table III.

mc (MeV) Td (MeV)

∞ 480

5000 480

2500 460

1200 440

0 420

TABLE III: Dissociation temperature for Upsilon (1S) for different values of the charm mass. The nf = 3 light quark masses
are set to zero. We use as an input the values of the Bohr radius and ΛQCD found in table 2.1 of [41]. The values of this
parameters for nF = 3 are used for all values of mc except for mc = 0, where we use the ones for nF = 4

Appendix A: Notation for the different effective field theories

At zero temperature there are three different energy scales for non-relativistic bound states. These are the hard
scale (for muonic hydrogen mµ), the soft scale mµα and the ultrasoft scale mµα2. Moreover, a finite temperature
system have also different energy scale as T , eT , e2T ... This makes it hard to find a comprenhensible notation for all
the effective field theories that may arise from integrating out the different degrees of freedom. In this paper we have
use the following notation. Basically we name the effective field theories as one would do for zero temperature, and we
encode the temperature information in a subindex. The subindex T means that the temperature has been integrated
out, the subindex mD means that also the scale eT have been integrated out. Since the matching coefficients of the
effective field theory that we obtain after integrating out mµ (p) and T is not the same if mµ (p) ∼ T or if mµ (p) >> T
we include a symbol <, > or blank depending of the relation between these scales. For example, if we are in mµ (p) ∼ T
we will arrive to NRQEDT (pNRQEDT ), but if mµ (p) >> T we reach NRQED>T (pNRQED>T ) because T is
smaller that the energy cutoff of NRQED (pNRQED).
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The complete mass and width up to O(mα5
s )

δE(thermal)
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where E1 = −
4mα2

s

9
, a0 =

3

2mαs
and L1,0 (similar I1,0) is the Bethe logarithm.
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Consistent with NRQCD lattice calculations of spectral functions

Lattice width
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