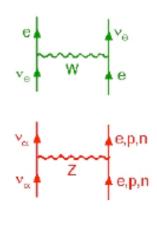


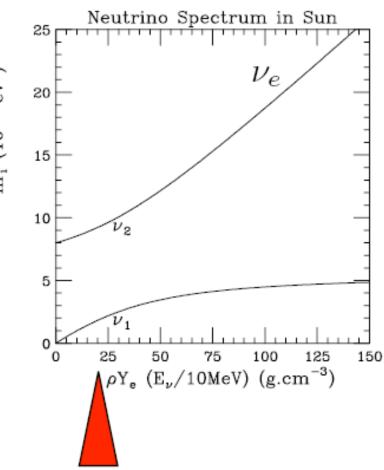
MSW

Coherent Forward Scattering:



Wolfenstein '78

MATTER EFFECTS CHANGE THE NEUTRINO MASSES AND MIXINGS



Mikheyev + Smirnov Resonance WIN '85

Neutrino Evolution:

$$-i\frac{\partial}{\partial t}\nu = H\nu$$

in the mass eigenstate basis

$$\nu = \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix} \text{ and } H = \begin{pmatrix} \sqrt{p^2 + m_1^2} & 0 \\ 0 & \sqrt{p^2 + m_2^2} \end{pmatrix}$$

$$E = \sqrt{p^2 + m^2}$$

$$H = (p + \frac{m_1^2 + m_2^2}{4p})I + \frac{1}{4E} \begin{pmatrix} -\delta m^2 & 0 \\ 0 & \delta m^2 \end{pmatrix}$$

$$\delta m^2 = m_2^2 - m_1^2 > 0$$

in the flavor basis

$$u \to U
u$$
 and $H \to U H U^{\dagger}$

where
$$\nu = \begin{pmatrix} \nu_e \\ \nu_\sigma \end{pmatrix}$$
 and $U = \begin{pmatrix} \cos\theta_\odot & \sin\theta_\odot \\ -\sin\theta_\odot & \cos\theta_\odot \end{pmatrix}$

and therefore in flavor basis

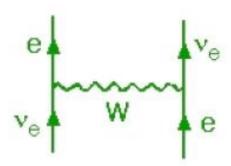
$$0 < \theta_{\odot} < \frac{\pi}{2}$$

$$H = \frac{\delta m^2}{4E} \begin{pmatrix} -\cos 2\theta_{\odot} & \sin 2\theta_{\odot} \\ \sin 2\theta_{\odot} & \cos 2\theta_{\odot} \end{pmatrix}$$

i.e.
$$\begin{pmatrix} E_1 & 0 \\ 0 & E_2 \end{pmatrix}_{mass} \Rightarrow \frac{\delta m^2}{4E} \begin{pmatrix} -\cos 2\theta_{\odot} & \sin 2\theta_{\odot} \\ \sin 2\theta_{\odot} & \cos 2\theta_{\odot} \end{pmatrix}_{flavor}$$

Coherent Forward Scattering:

dimensions
$$[G_FN_e]=M^{-2}L^{-3}=M$$



$$\pm\sqrt{2}G_FN_e~\delta_{ee}$$

 N_e is number density of electrons +(-) for neutrinos (anti-neutrinos)

Same for all active flavors, therefore overall phases

$$\left(\begin{array}{cc} +\sqrt{2}G_FN_e & 0 \\ 0 & 0 \end{array} \right) \to \frac{G_FN_e}{\sqrt{2}}I_2 + \frac{1}{2} \left(\begin{array}{cc} +\sqrt{2}G_FN_e & 0 \\ 0 & -\sqrt{2}G_FN_e \end{array} \right)$$

Including Matter Effects in the Flavor Basis:

$$H_{flavor} = \frac{1}{4E_{\nu}} \left(\begin{array}{cc} -\delta m^2 \cos 2\theta_{\odot} + 2\sqrt{2}G_F N_e E_{\nu} & \delta m^2 \sin 2\theta_{\odot} \\ \\ \delta m^2 \sin 2\theta_{\odot} & \delta m^2 \cos 2\theta_{\odot} - 2\sqrt{2}G_F N_e E_{\nu} \end{array} \right)$$

Diagonalize by identifying with

$$H_{flavor} = \frac{1}{4E_{\nu}} \begin{pmatrix} -\delta m_N^2 \cos 2\theta_{\odot}^N & \delta m_N^2 \sin 2\theta_{\odot}^N \\ \delta m_N^2 \sin 2\theta_{\odot}^N & \delta m_N^2 \cos 2\theta_{\odot}^N \end{pmatrix}$$

Masses and Mixings in MATTER: δm_N^2 and $heta_\odot^N$

$$\delta m_N^2 \cos 2\theta_{\odot}^N = \delta m^2 \cos 2\theta_{\odot} - 2\sqrt{2}G_F N_e E_{\nu}$$

$$\delta m_N^2 \sin 2\theta_{\odot}^N = \delta m^2 \sin 2\theta_{\odot}$$

Notice:

- (1) Possible zero when $\delta m^2 \cos 2\theta_{\odot} = 2\sqrt{2}G_F N_e E_{\nu}$
- (2) the invariance of the product $\delta m^2 \sin 2\theta_{\odot}$

 ν_e disappearance in Loooong Block of Lead:

$$1 - P(\nu_e \to \nu_e) = \sin^2 2\theta_{\odot}^N \sin^2 \Delta_N$$

$$\Delta_N = \frac{\delta m_N^2 L}{4E}$$

same form as vacuum

The Solution:

$$\delta m_N^2 = \sqrt{(\delta m^2 \cos 2\theta_{\odot} - 2\sqrt{2}G_F N_e E_{\nu})^2 + (\delta m^2 \sin 2\theta_{\odot})^2}$$

$$\sin^2 \theta_{\odot}^N = \frac{1}{2} \left(1 - \frac{(\delta m^2 \cos 2\theta_{\odot} - 2\sqrt{2}G_F N_e E_{\nu})}{\delta m_N^2} \right) \qquad \theta_{\odot}^N > \theta_{\odot}$$

Quasi-Vacuum: $2\sqrt{2}G_FN_eE_{\nu}\ll\delta m^2\cos2\theta_{\odot}$

pp and ⁷Be

$$\delta m_N^2 = \delta m^2 \text{ and } \theta_\odot^N = \theta_\odot$$

Resonance (Mikheyev + Smirnov '85): $2\sqrt{2}G_FN_eE_{\nu}=\delta m^2\cos2\theta_{\odot}$

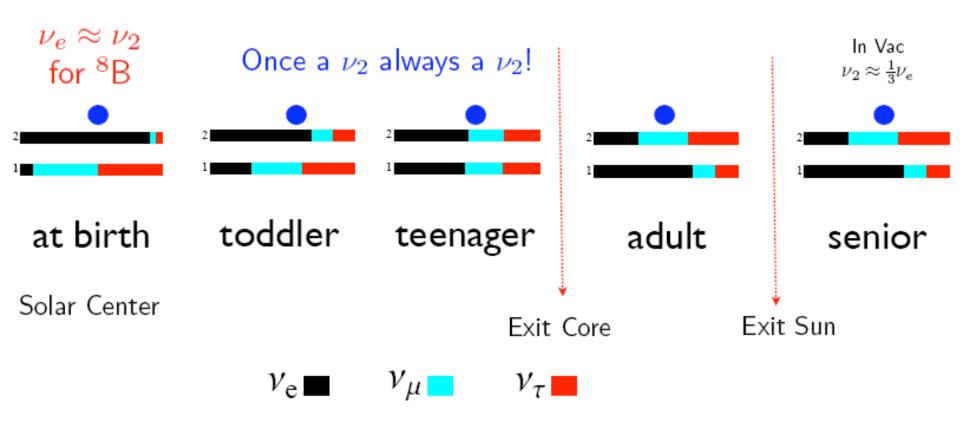
$$\delta m_N^2 = \delta m^2 \sin 2\theta_\odot$$
 and $\theta_\odot^N = \pi/4$

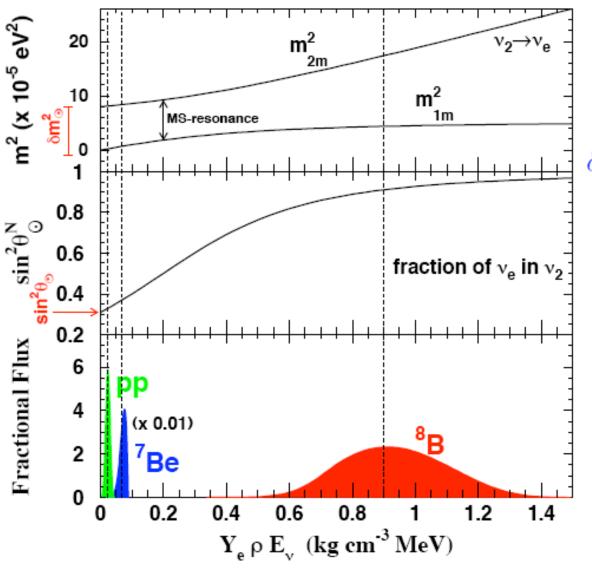
Matter Dominated: $2\sqrt{2}G_F N_e E_{\nu} \gg \delta m^2 \cos 2\theta_{\odot}$

$$\delta m_N^2
ightarrow 2\sqrt{2}G_F N_e E_{
u}$$
 and $heta_\odot^N
ightarrow \pi/2$

 8B

Life of a Boron-8 Solar Neutrino:





In Vacuum

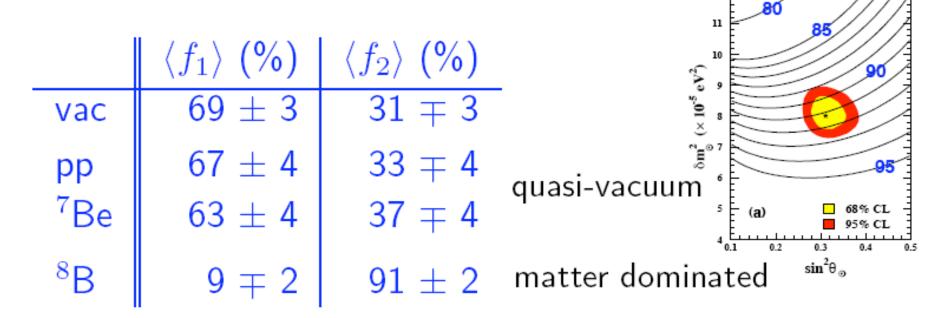
$$\delta m_{\odot}^2 = 8.0 \pm 0.4 \times 10^{-5} \ eV^2$$

 $\sin^2 \theta_{\odot} = 0.31 \pm 0.03$

Whereas for ⁸B at center of Sun

$$\delta m_N^2 = 14 \times 10^{-5} \ eV^2$$
$$\sin^2 \theta_{\odot}^N = 0.91$$

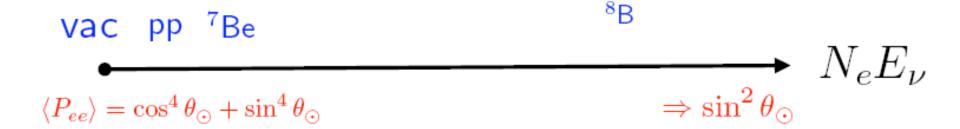
Mass Eigenstate Purity:



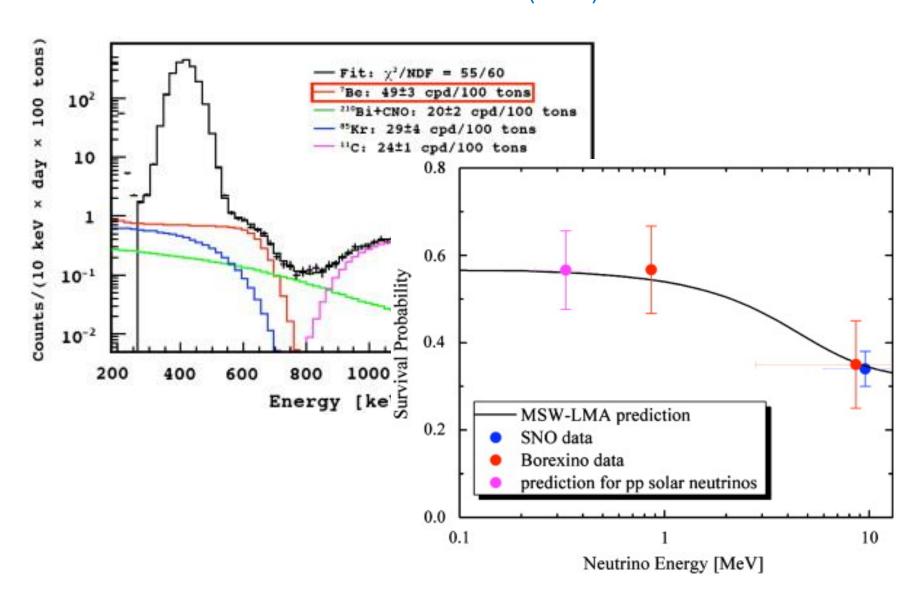
$$f_1 = \cos^2 heta_\odot^N$$
 and $f_2 = \sin^2 heta_\odot^N$

$$\langle P_{ee} \rangle = f_1 \cos^2 \theta_{\odot} + f_2 \sin^2 \theta_{\odot}$$

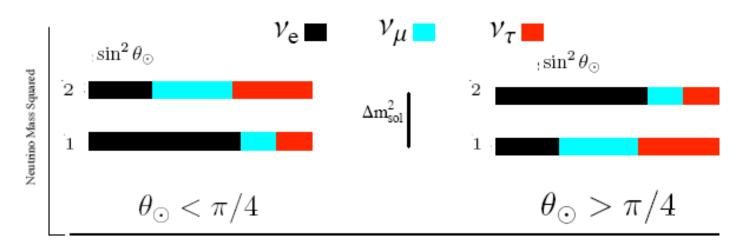
⁸B: ν_2 fraction (%)



Borexino results (2011)



Solar Pair Mass Hierarchy:



Fractional Flavor Content

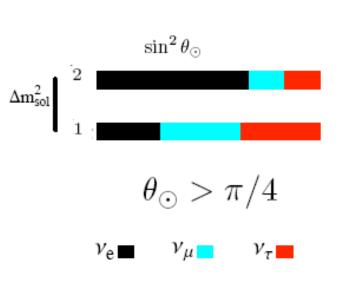
Who cares? SNO does!!!

for neutrino in matter $heta_{\odot}^N > heta_{\odot}$

$$\begin{split} \langle P_{ee} \rangle &= \cos^2 \theta_\odot^N \cos^2 \theta_\odot + \sin^2 \theta_\odot^N \sin^2 \theta_\odot = \tfrac{1}{2} + \tfrac{1}{2} \cos 2\theta_\odot^N \cos 2\theta_\odot \ \, \underline{\sqrt{2} G_F N_e E_\nu)} \\ & \text{if } \theta_\odot < \pi/4 \qquad \qquad \text{if } \theta_\odot > \pi/4 \\ & \langle P_{ee} \rangle \geq \sin^2 \theta_\odot \qquad \langle P_{ee} \rangle \geq \tfrac{1}{2} (1 + \cos^2 2\theta_\odot) \geq \tfrac{1}{2} \end{split}$$

SNO: $\langle P_{ee} \rangle_{day} = 0.347 \pm 0.038$

Solar Hierarchy Determined !!!



Solar matter effects put more of the neutrino into ν_2 . This raises the survival probability above vacuum value since ν_2 has more ν_e . But the minimum of P_{ee} in vacuum is 1/2.

For this hierarchy
$$P_{ee}^{matter} \geq P_{ee}^{vac} \geq 1/2$$
 But $P_{ee}^{SNO} = 0.347 \pm 0.038 < 1/2$

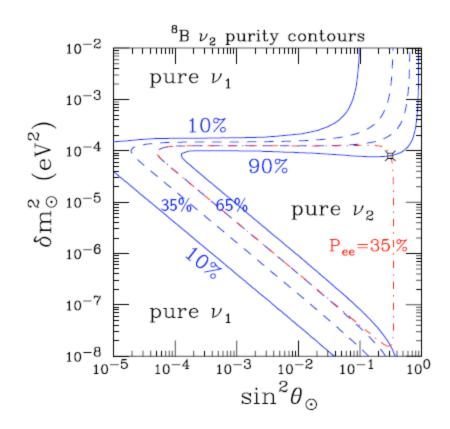
This solar hierarchy EXCLUDED !!!.

The Big Picture:

$$P_{ee} = f_1 \cos^2 \theta_{\odot} + f_2 \sin^2 \theta_{\odot}$$

$$f_1 = (1 - P_x)\cos^2\theta_{\odot}^N + P_x\sin^2\theta_{\odot}^N$$
$$f_2 = (1 - P_x)\sin^2\theta_{\odot}^N + P_x\cos^2\theta_{\odot}^N$$

 P_x is the probability to jump from ν_2 to ν_1 (or ν_1 to ν_2) during MS-resonance crossing.



$$P_{ee} = \frac{1}{2} + \left(\frac{1}{2} - P_x\right) \cos 2\theta_{\odot}^N \cos 2\theta_{\odot}$$

Jump Probability:
$$P_{m} \approx \exp \left(-\pi \frac{Width \ of \ Resonance}{Resonance}\right)$$

$$P_x \approx \exp\left(-\pi \frac{Width\ of\ Resonance}{Oscillation\ Length}\right)$$

Day/Night Asymmetry:

$$\sin^2 \theta_{\odot} \to \sin^2 \theta_{\oplus} = \sin^2 \theta_{\odot} + \frac{1}{2} \sin^2 2\theta_{\odot} \left(\frac{A_{\oplus}}{\delta m_{\odot}^2} \right)$$
 in the earth.

A=2(D-N)/(D+N) expected to be few %

SK:

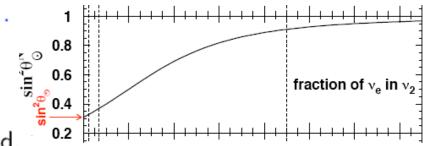
$$A_{ES} = -1.8 \pm 1.6(\text{stat})^{+1.3}_{-1.2}(\text{syst})\%$$

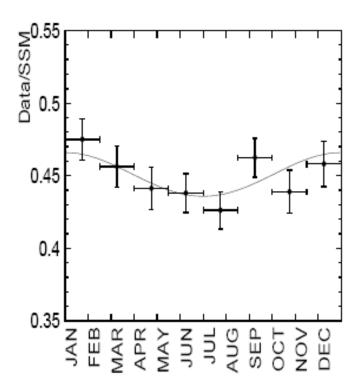
Spectral Distortion:

A characteristic of matter effects is that the Fraction of ν_2 is energy dependent .

Smaller at smaller E.

Implies an increase in P_{ee} near threshold.





The neutrinos definitely come from the Sun, expected seasonal variation, no spectral distorsion and no significant day-night asymmetry

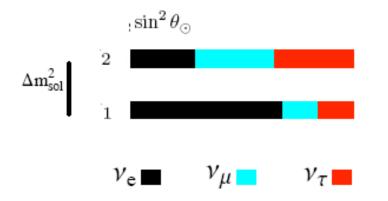
Summary:

The low energy pp and 7 Be Solar Neutrinos exit the sun as two thirds ν_{1} and one third ν_{2} due to (quasi-) vacuum oscillations.

$$f_1=65\pm2\%$$
, $f_2=35\mp2\%$ with $P_{ee}\approx0.56$

The high energy 8 B Solar Neutrinos exit the sun as "PURE" ν_2 mass eigenstates due to matter effects.

$$f_2=91\pm2\%$$
 and $f_1=9\mp2\%$ with $P_{ee}\approx0.35$.



$$\delta m_{\odot}^2 = 8.0 \pm 0.4 \times 10^{-5} eV^2$$

$$\sin^2 \theta_{\odot} = 0.310 \pm 0.026$$

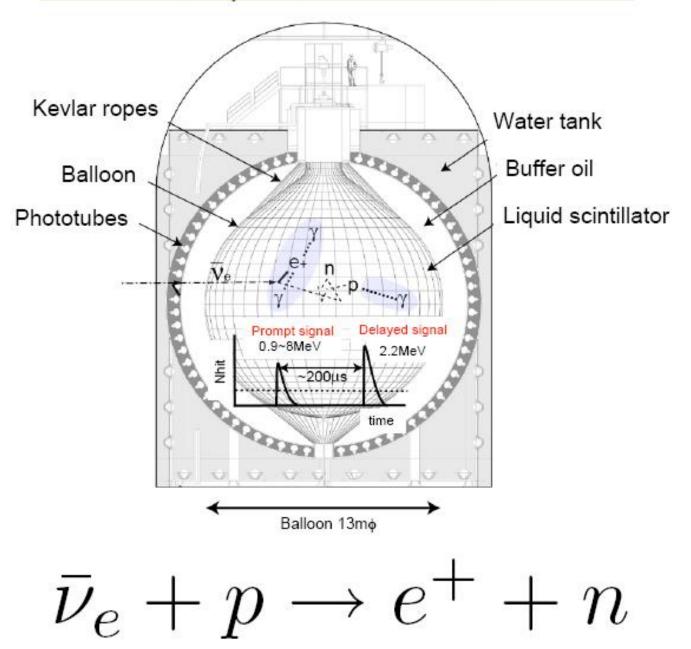
at 68% CL

Testing solar neutrino oscillations with reactors

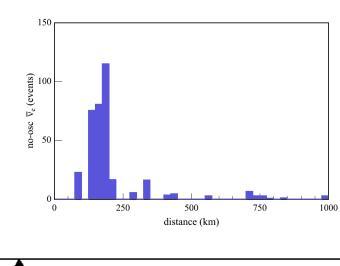
$$1 - P(\nu_e \to \nu_e) = \sin^2 2\theta_{\odot} \sin^2 \Delta$$

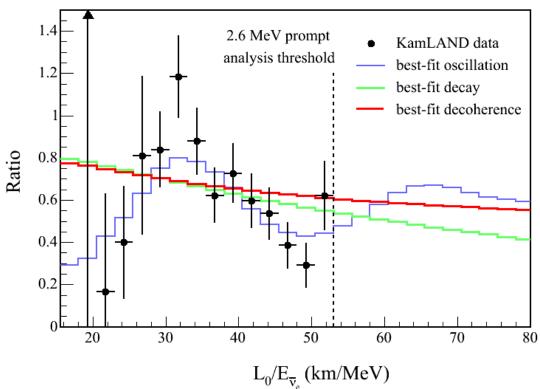
$$\begin{array}{c} 10^{\text{-5}}\,\mathrm{eV^2} \\ \Delta &= \frac{\delta m^2\;L}{4E} \end{array} \qquad \begin{array}{c} 10^5\mathrm{m} = 100\;\mathrm{km} \\ \end{array}$$

Kamioka Liquid Antineutrino Detector

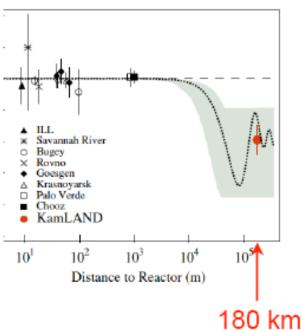


expected no-oscillation neutrino event rate at KamLAND









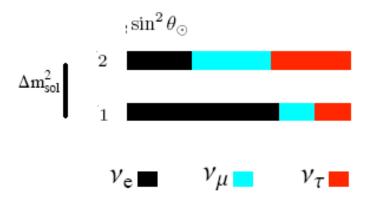
Summary:

The low energy pp and ${}^7\text{Be}$ Solar Neutrinos exit the sun as two thirds ν_1 and one third ν_2 due to (quasi-) vacuum oscillations.

$$f_1 = 65 \pm 2\%$$
, $f_2 = 35 \mp 2\%$ with $P_{ee} \approx 0.56$

The high energy 8 B Solar Neutrinos exit the sun as $^{\prime\prime}$ PURE" ν_2 mass eigenstates due to matter effects.

$$f_2=91\pm2\%$$
 and $f_1=9\mp2\%$ with $P_{ee}\approx0.35$.



$$\delta m_\odot^2 = 8.0 \pm 0.4 \times 10^{-5} eV^2$$

$$\sin^2\theta_\odot = 0.310 \pm 0.026$$
 at 68% CL

SNO, KamLAND, SK/K, GNO/Gallex, SAGE, CI

The LSND experiment

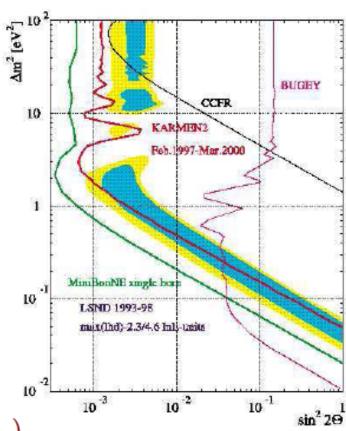
- The only short distance signal for oscillation: L=30 m with $\langle E_{\nu} \rangle \sim 30$ MeV;
- Used the proton beam of Los Alamos. Same production chain as in ATM:

1
$$p + \mathsf{target} \to \pi^+ + X$$
,

$$2 \mid \pi^+ \to \mu^+ + \nu_\mu,$$

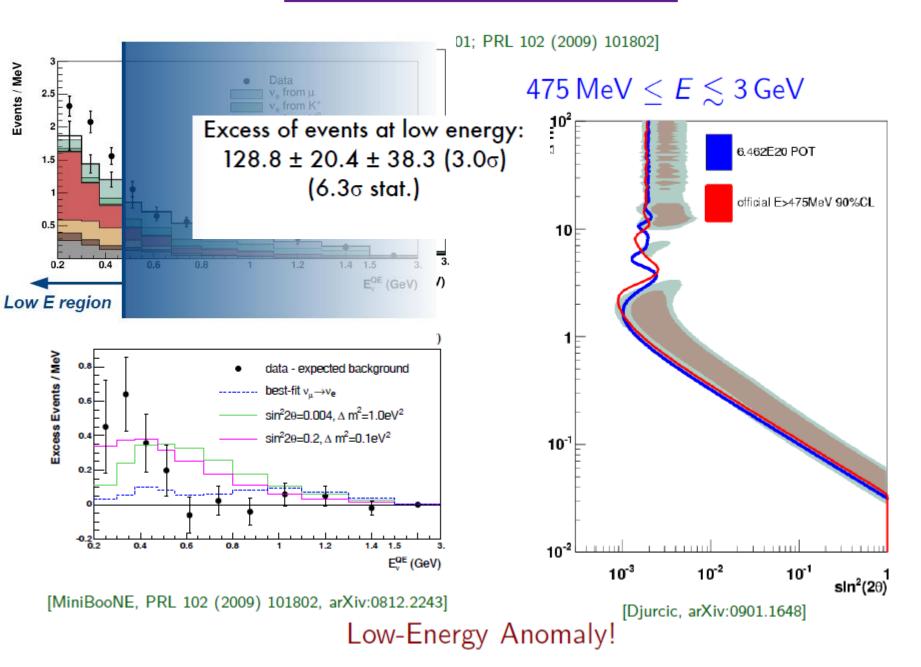
$$\boxed{\mathbf{3}} \quad \mu^+ \to e^+ + \mathbf{v_e} + \bar{\mathbf{v}}_{\mu};$$

- observed $\bar{\mathbf{v}}_{\mu} \rightarrow \bar{\mathbf{v}}_{e}$ with probability $\langle P_{e\mu} \rangle = (0.26 \pm 0.07 \pm 0.05)\%$
- Karmen which searched for the same signal and did not observe oscillations.



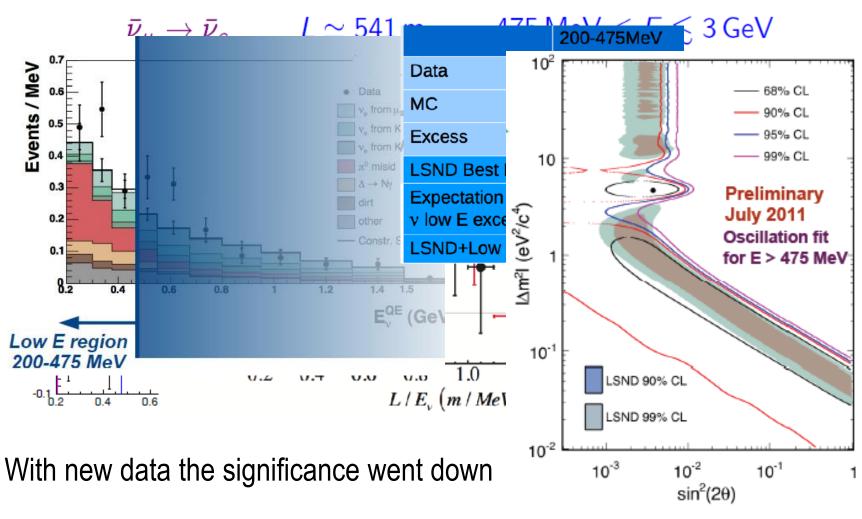
$$\Delta m_{\mathsf{LSND}}^2 \gtrsim 0.2 \, \mathsf{eV}^2 \quad (\gg \Delta m_{\mathsf{ATM}}^2 \gg \Delta m_{\mathsf{SOL}}^2)$$

MiniBooNE Neutrinos



MiniBooNE Antineutrinos

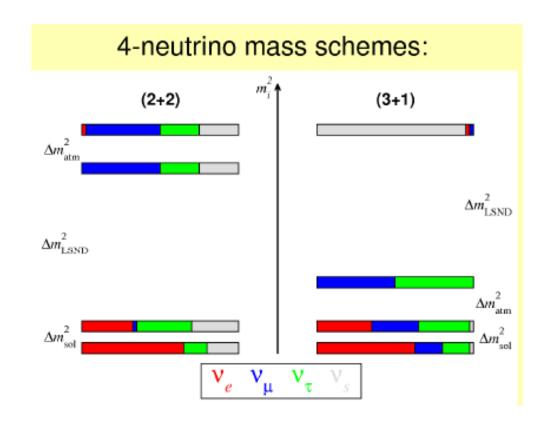
[PRL 103 (2009) 111801; PRL 105 (2010) 181801]



Similar L/E but different L and $E \Longrightarrow$ Oscillations!

With 3 different Δm^2 4 light neutrinos needed!

4th ν : cannot be active – must be sterile. Mixing matrix: 6 θ_{ij} , 3 Dirac-type \mathcal{OP} phases. But: simplifications occur – only two possible type of schemes: 2+2 and 3+1



Nu Standard Model:

The ν Standard Model

• 3 light $(m_i < 1 \text{ eV})$ Majorana Neutrinos:

$$\Rightarrow$$
 only 2 δm^2

$$|\delta m^2_{atm}|\sim 2.5 imes 10^{-3}~{
m eV^2}$$
 and $\delta m^2_{solar}\sim +8.0 imes 10^{-5}~{
m eV^2}$

• Only Active flavors (no steriles):

```
e, \mu, \tau
```

Unitary Mixing Matrix:

```
3 angles (\theta_{12}, \theta_{23}, \theta_{13}), 1 Dirac phase (\delta),
```

2 Majorana phases (α_2, α_3)

(n imes n) unitary mixing matrix $\tilde{U} \Rightarrow n^2$ real parameters:

$$\frac{n(n-1)}{2}$$
 mixing angles, $\frac{n(n+1)}{2}$ phases

In Dirac ν case: n+(n-1)=2n-1 phases unphysical – can be absorbed into redefinition of charged lepton and neutrino fields. Number of physical phases:

$$\frac{n(n+1)}{2} - (2n-1) = \frac{(n-1)(n-2)}{2}$$

In Majorana case - only n phases can be absorbed (redefinition of ν fields not possible) \Rightarrow In addition to Dirac-type phases there are (n-1) physical Majorana-type phases.

$$|\nu_{\alpha}\rangle_{flavor} = U_{\alpha i}|\nu_{i}\rangle_{mass}.$$

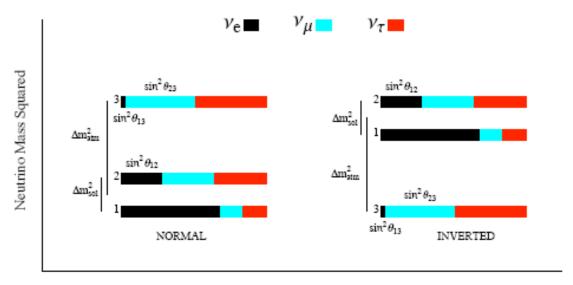
Atmos. L/E
$$\mu \to \tau$$
 Atmos. L/E $\mu \leftrightarrow e$ Solar L/E $e \to \mu, \tau$ $\beta \beta 0 \nu$ decay 15km/MeV
$$\begin{pmatrix} 1 & & & \\ & c_{23} & s_{23} \\ & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & & s_{13}e^{-i\delta} \\ & 1 & & \\ & -s_{13}e^{i\delta} & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} \\ & -s_{12} & c_{12} \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & & \\ & e^{i\alpha} & \\ & & e^{i\beta} \end{pmatrix}$$

In oscillation phenomena,

the phases α_2 , α_3 are unobservable $(U_{\alpha i}U_{\beta i}^*)$ and also the value of m_{lite} is irrelevant (δm^2)

$$= \begin{pmatrix} c_{13}c_{12} & c_{13}s_{12} & s_{13}e^{-i\delta} \\ -c_{23}s_{12} - s_{13}s_{23}c_{12}e^{i\delta} & c_{23}c_{12} - s_{13}s_{23}s_{12}e^{i\delta} & c_{13}s_{23} \\ s_{23}s_{12} - s_{13}c_{23}c_{12}e^{i\delta} & -s_{23}c_{12} - s_{13}c_{23}s_{12}e^{i\delta} & c_{13}c_{23} \end{pmatrix}$$

(12)-Sector:

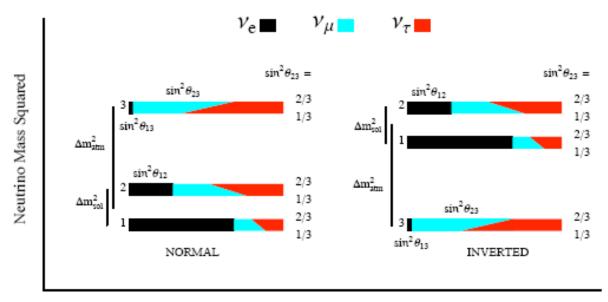


Fractional Flavor Content

(12) Parameters: SNO, KamLAND, SK

$$\begin{split} \delta m_{21}^2 &= +8.0 \pm 0.8 \times 10^{-5}~eV^2 \\ 0.25 &< \sin^2\theta_{12} < 0.37 \\ \sin^2\theta_{12} &\geq \frac{1}{2}~\text{excluded at} > 5~\sigma! \\ \text{sign of}~\delta m_{21}^2~\text{determined at this C.L.} \end{split}$$

(23)-Sector:



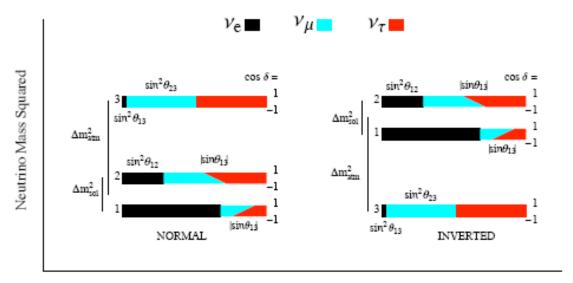
Fractional Flavor Content varying $\sin^2\theta_{23}$

(23) Parameters: SK, K2K

$$|\delta m_{32}^2| = 1.5 - 3.4 \times 10^{-3}~eV^2$$

$$0.36 < \sin^2\theta_{23} < 0.64$$
 (obtained from $\sin^22\theta_{23} > 0.91$)

(13)-Sector:



Fractional Flavor Content varying $\cos \delta$

CPT: $\delta \Leftrightarrow -\delta$ Invariant!

$$P(v_e \to v_e) = 1 - 4|U_{e1}|^2|U_{e2}|^2\sin^2\Delta_{21} - 4|U_{e1}|^2|U_{e3}|^2\sin^2\Delta_{31} - 4|U_{e2}|^2|U_{e3}|^2\sin^2\Delta_{32}$$

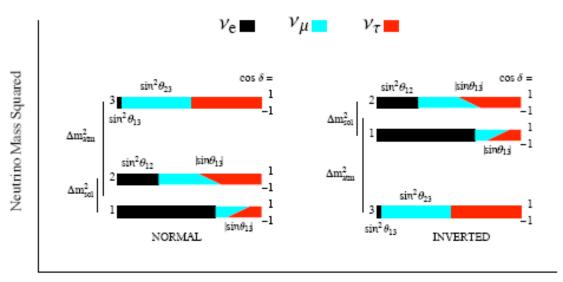
$$m_3^2 - m_1^2 = (m_3^2 - m_2^2) + (m_2^2 - m_1^2)$$

 $L_{32} \sim 0.8 \text{ km}$

$$P(v_e \to v_e) \approx 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} - \sin^2 2\theta_{13} \sin^2 \Delta_{32}$$

$$L_{21} \sim 30 \text{ km}$$

(13)-Sector:



Less than 4% ν_e in the 3 state!

Fractional Flavor Content varying $\cos \delta$

CPT: $\delta \Leftrightarrow -\delta$ Invariant!

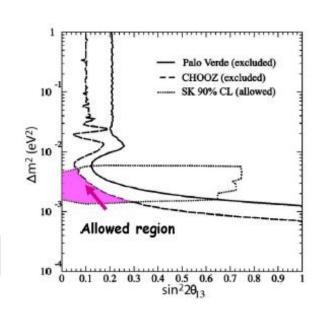
Palo Verde & Chooz: no signal

$$\sin^2 2\theta_{13} < 0.12 @ 90\% C.L.$$

if $\Delta M^2_{23} = 0.0024 \text{ eV}^2$

Double Chooz: 1.7 σ

 $\sin^2 2\theta_{13} = 0.086 \pm 0.041 \text{(stat)} \pm 0.030 \text{(sys)}$



$$P(\nu_e \to \nu_\mu) \approx -4U_{e1}U_{\mu 1}U_{e2}U_{\mu 2}\sin^2\Delta_{21} + 4U_{e3}^2U_{\mu 3}^2\sin^2\Delta_{32}$$
$$\approx \sin^2(2\theta_{13}) \sin^2(2\theta_{23}) \sin^2(\Delta_{32})$$

♦ T2K: 2.5σ over bkg

 $0.03 < \sin^2 2\theta_{13} < 0.28$ @ 90%C.L. for NH $0.04 < \sin^2 2\theta_{13} < 0.34$ @ 90%C.L. for IH

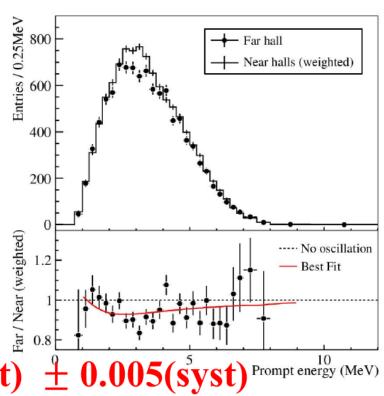
♦ Minos: 1.7 σ over bkg

 $0 < \sin^2 2\theta_{13} < 0.12$ @ 90% C.L. NH $0 < \sin^2 2\theta_{13} < 0.19$ @ 90% C.L. IH

March 8, 2012, Daya Bay (electron antineutrino disaprearance)

Observed: 9901 neutrinos at far site Prediction: 10530 neutrinos if no os

 $R = 0.940 \pm 0.011 \text{ (stat)} \pm 0.00$

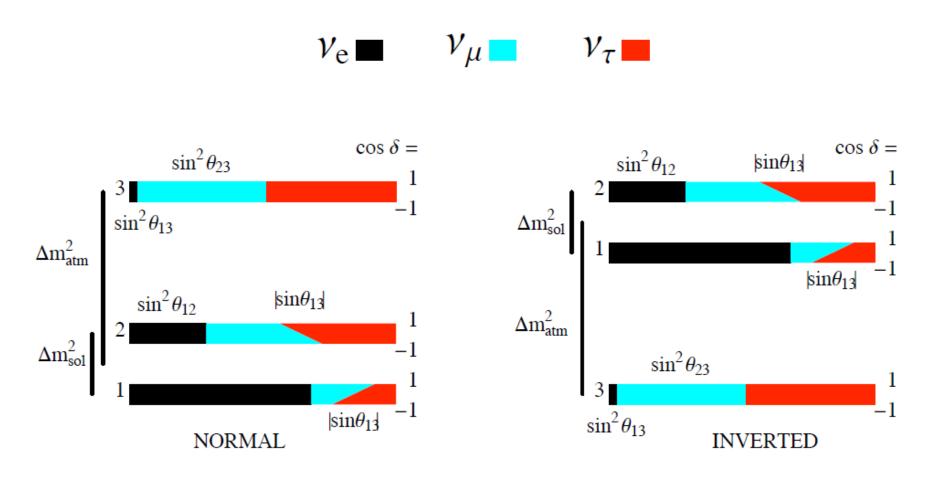


 $\sin^2(2 \theta_{13}) = 0.092 \pm 0.016(\text{stat}) \pm 0.005(\text{syst})^{\text{Prompt energy (MeV)}}$

5.2 σ for nonzero θ_{13}

Spectral distortion Consistent with oscillation

What's to be done ...



We determined that $m(K_L) > m(K_S)$ by

- Passing kaons through matter (regenerator)
- •Beating the unknown sign[m(K_L) –m(K_S)] against the known sign[reg. ampl.]

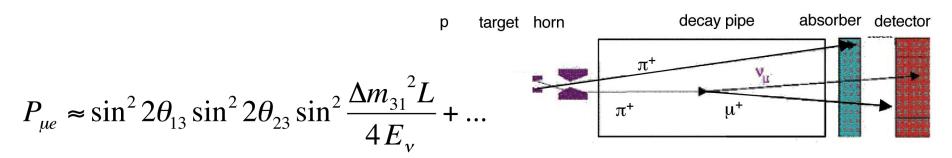
We will determine the sign(Δm_{32}^2) by

- Passing neutrinos through matter (Earth)
- •Beating the unknown sign(Δm^2_{32}) against the known sign[forward $\nu_e \, e \to \nu_e \, e$ ampl]

$$L \approx \frac{2 \pi}{G_F n_e} \approx 1.16 \ 10^4 \ \text{km} \left(\frac{1.69 \ 10^{24} \ cm^3}{n_e} \right)$$

CP: How we are going to do it?

Accelerator experiments



- \triangleright Appearance experiment $v_{\mu} \rightarrow v_{e}$
- > Measurement of $\nu_{\mu} \rightarrow \nu_{e}$ and $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ yields δ

Remember what happens in the quark sector !!!

$$\begin{split} P_{\nu e \nu \mu (\bar{\nu} e \bar{\nu} \mu)} &= s_{23}^2 \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta_{23} L}{2}\right) &\equiv P^{atmos} \\ &+ c_{23}^2 \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta_{12} L}{2}\right) &\equiv P^{solar} \\ &+ \tilde{J} &\cos \left(\pm \delta - \frac{\Delta_{23} L}{2}\right) &\frac{\Delta_{12} L}{2} \sin \left(\frac{\Delta_{23} L}{2}\right) &\equiv P^{inter} \end{split}$$

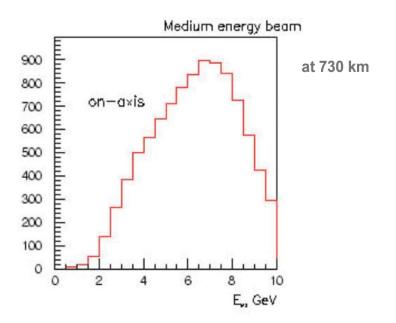
$$(\tilde{J} \equiv c_{13} \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23}, \quad \Delta_{ij} \equiv \frac{\Delta m_{ij}^2}{2E_{\nu}})$$

$$P(\overline{v}_{\mu} \to \overline{v}_{e}) - P(v_{\mu} \to v_{e}) = 2\cos\theta_{13}\sin2\theta_{13}\sin2\theta_{12}\sin2\theta_{23}\sin\delta$$

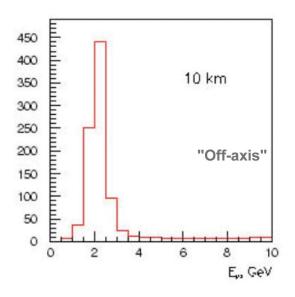
$$\times \sin\left(\Delta m^{2}_{31}\frac{L}{4E}\right)\sin\left(\Delta m^{2}_{32}\frac{L}{4E}\right)\sin\left(\Delta m^{2}_{21}\frac{L}{4E}\right)$$

The off axis idea

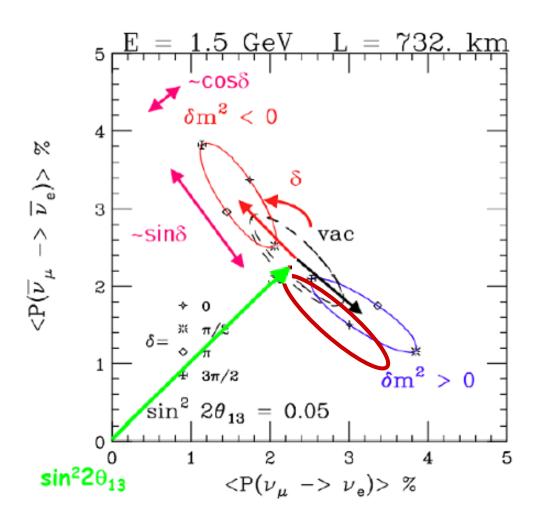
By going off axis, the beam energy is reduced and the spectrum becomes very sharp.



Allows an experiments to pick an energy for the maximum oscillation length.



What will we get?



Minakata and Nunokawa

Vacuum LBL:
$$u_{\mu}
ightarrow
u_{e}$$

$$P_{\mu
ightarrow e} pprox |\sqrt{P_{atm}}e^{-i(\Delta_{32}\pm\delta)}+\sqrt{P_{sol}}|^2$$
 $\Delta_{ij}=|\delta m_{ij}^2|L/4E$ CP violation !!!

where
$$\sqrt{P_{atm}} = \sin \theta_{23} \sin 2\theta_{13} \sin \Delta_{31}$$

and
$$\sqrt{P_{sol}} = \cos \theta_{23} \sin 2\theta_{12} \sin \Delta_{21}$$

with MATTER $P_{\mu-}$

$$P_{\mu
ightarrow e} pprox \mid \sqrt{P_{atm}} e^{-i(\Delta_{32} \pm \delta)} + \sqrt{P_{sol}} \mid^2$$

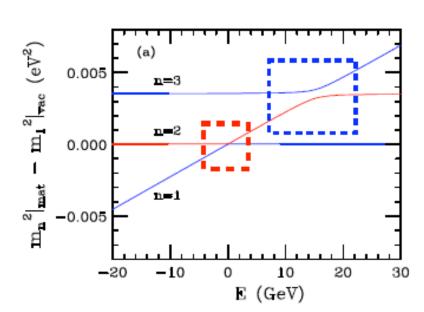
where
$$\sqrt{P_{atm}}=\sin\theta_{23}\sin2\theta_{13}\frac{\sin(\Delta_{31}\mp aL)}{(\Delta_{31}\mp aL)}\Delta_{31}$$
 in vac $\sin\Delta_{31}$

and
$$\sqrt{P_{sol}}=\cos\theta_{23}\sin2\theta_{12}\frac{\sin(aL)}{(aL)}\Delta_{21}$$

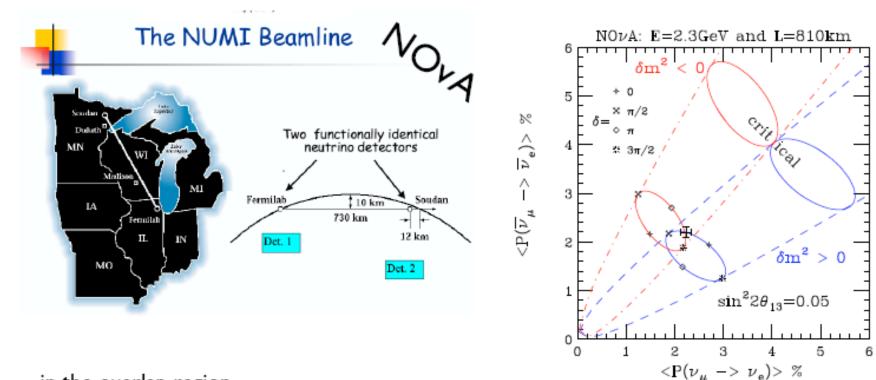
$$a = G_F N_e / \sqrt{2} = (4000 \ km)^{-1},$$

$$\pm = sign(\delta m^2_{31})$$
 $\Delta_{ij} = |\delta m^2_{ij}|L/4E$

 $\{\delta m^2 \sin 2\theta\}$ is invariant



Neutrino v Anti-Neutrino One Expt.

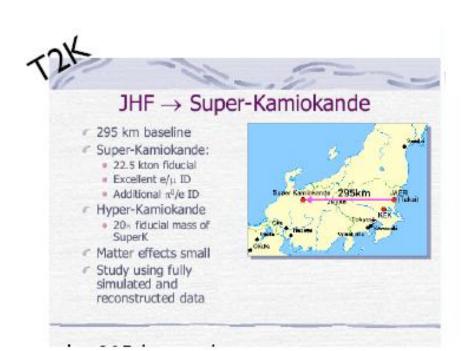


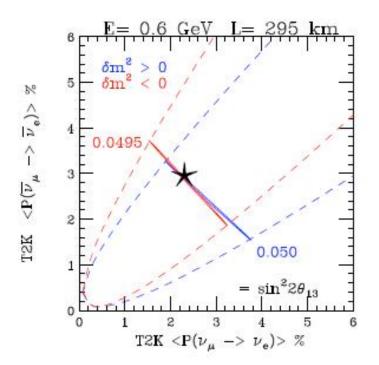
in the overlap region

$$\langle \sin \delta \rangle_{+} - \langle \sin \delta \rangle_{-} = 2 \langle \theta \rangle / \theta_{crit} \approx 1.4 \sqrt{\frac{\sin^{2} 2\theta_{13}}{0.05}}$$

exact along diagonal --- approximately true throughout the overlap region!!!

$$\theta_{crit} = \frac{\pi^2}{8} \, \frac{\sin 2\theta_{12}}{\tan \theta_{23}} \, \frac{\delta m_{21}^2}{\delta m_{31}^2} \left(\frac{4\Delta^2/\pi^2}{1-\Delta \cot \Delta} \right) / (aL) \sim 1/6$$
 i.e. $\sin^2 2\theta_{crit} = 0.10$





$$\langle \sin \delta \rangle_{+} - \langle \sin \delta \rangle_{-} = 2 \langle \theta \rangle / \theta_{crit} \approx 0.47 \sqrt{\frac{\sin^{2} 2\theta_{13}}{0.05}}$$

 (ρL) for NOvA three times larger than (ρL) than T2K.

- ν_e fraction of ν_3 :
- mass hierarchy:
- CP violation:

observable

 $-\sin^2\theta_{13}$

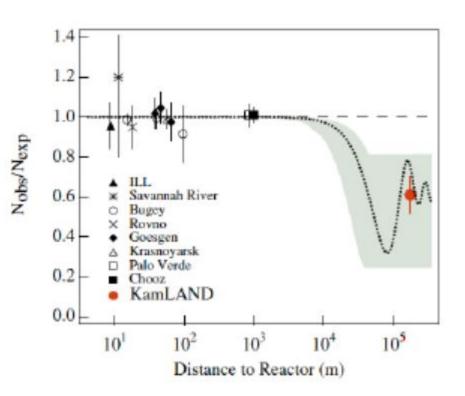
- sign of δm_{31}^2

 $-\sin\delta\neq0$

On March 2011 ArXiv 1101.2755

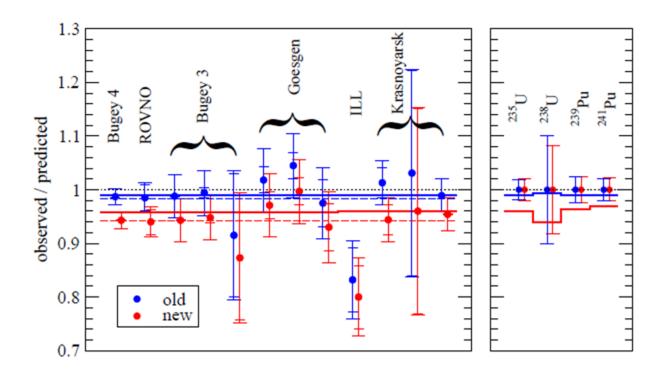
New reactor antineutrino spectra have and ²³⁸U, increasing the mean flux by

This reevaluation applies to all reactors

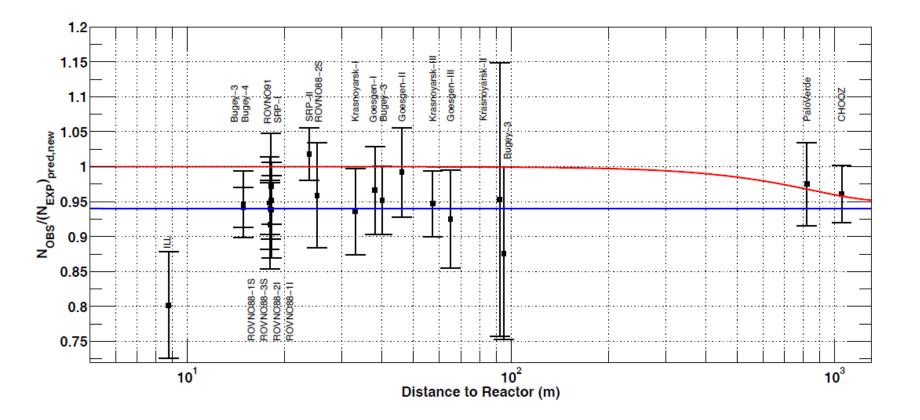


It means that for experiments at reactor-detector distances < 100 m the ratio of observed event rate to predicted rate shifts

$$0.976 \pm 0.024 \rightarrow 0.943 \pm 0.023$$



"The Reactor Antineutrino Anomaly," Phys. Rev. D 83: 073006, 2011 (ArXiv preprint, 14 Jan. 2011)



3
$$v \sin^2(2\theta_{13}) = 0.06$$

4 $v \Delta m^2 > 1 \text{ eV}^2 \sin^2(2\theta_{new}) = 0.12$