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Using the top quark to probe BSM physics

!e top quark as a link to BSM
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It is the main contributor to hierarchy problem
 -> Standard Model is unnatural above 500 GeV

Christophe Grojean Beyond the Standard Model HCPSS, CERN, June 2o11

Quantum Instability of the Higgs Mass
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The top dramatically affects the stability of the higgs mass:
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The top quark dramatically affects the stability of the Higgs mass.
Consider the SM as an effective field theory valid up to scale !:

Top as a link to BSM
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Putting numbers, I have:
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Putting numbers, I have:

therefore  top quark 
is expected to be a link to BSM

●The top quark is the heaviest known fundamental particle, mt  = 173.3 ± 1.1 GeV 

and the only SM fermion to have a natural Yukawa coupling (order 1).



●The measurement of its properties (mass, couplings, spin) is used to 

establish  indirect evidence for SM and BSM physics: precision EW & QCD, 
rare decays, anomalous couplings, flavor physics, CP violation
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Top Physics aims

I. Measure all properties 
(mass, couplings, spin) to 
establish indirect evidence 
for SM and BSM physics.

II.  Use top as direct probe  
of the EWSB sector and 
BSM physics

Precision EW and QCD;  
Rare decays and anomalous 
couplings. Flavor Physics. 
CP violation. 

SM : ttH; tH 
BSM: Z’ and W’ resonances; 
SUSY: tH+ and t!bH+ or 
stop !t X.  

mt [GeV]
●The top is also a direct probe of the EWSB sector and BSM physics
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Top Physics aims II : direct probe

Exciting the Higgs
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What else " #ecial ab$t % top?

●The top quark decays before it hadronizes, hence offers the opportunity to 

study a “bare” quark: spin properties, interaction vertices, top quark mass

 It decays almost exclusively to W+ b in the SM as |Vtb|2 >> |Vts|2 ,|Vtd|2

�had � ��1
QCD � 2.10�24s

⇥top � ��1
top � (GF m3

t |Vtb|2/8�
⇤

2)�1 � 5.10�25s
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Two production mechanisms:

Rikkert Frederix, University of Zurich
2

The top quark is the heaviest fundamental particle that we know
mt = 173.3 ± 1.1 GeV

Because of its heavy mass, its Yukawa coupling is of order 1 in SM

Two production mechanisms:

top pair production

single top production

Top quarks do not hadronize (its decay is an order of magnitude faster than 
the hadronization time). Opportunity to study a “bare” quark:

Spin properties

Interaction vertices

Top quark mass

Decays almost exclusively to t!W+b in the SM: |Vtb|
2!|Vts|
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#e top quark production at ha$on colliders
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We already knew a lot on top quark from the Tevatron. 
Tevatron had already  set strong constraints on top-philic new physics

90 % of total cross section at 14 TeV
(70 % at 7 TeV)

What has been mainly tested at the Tevatron is the q q process-

From Tevatron to LHC
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Tevatron LHC

                      

  Cargese 2010                                                                                                                                                      Fabio Maltoni

Tevatron LHC
Tevatron LHC

85 % of total cross 
section

while new physics contributions to gg -> t t remained unconstrained
-
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New resonances
In many scenarios for EWSB new resonances show up, some of which preferably couple 
to 3rd generation quarks.

Given the large number of models, in this case is more efficient to adopt a “model 
independent” search and try to get as much information as possible on the quantum 
numbers and coupling of the resonance.
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* Vector resonance, in a color 
singlet or octet states.

*Widths and rates very 
different

* Interference effects with 
SM ttbar production not 
always negligible

* Direct information on 
!•Br and ".
 

Phase 1: discovery

A large effort has been devoted to search for new physics in tt resonances
-

Frederix-Maltoni’09

BSM wi! top physics
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the limits are rounded up to one decimal places

narrow Z’
mass

wide Z’
mass

KK gluon
mass

CMS
TOP-11-010

ATLAS
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Expected limits

Dilepton
Lepton+jets (low mass)
Lepton+jets (high mass)
All-hadronic

 = 7 TeVsCMS Preliminary -1L = 4.4-5.0 fb

narrow Z’ mass

Resonances are excluded in mass regions:
narrow Z’ mass!

wide Z’ mass!
KK gluon mass!

 in mass regions:
< 1.6 TeV
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< 1.4 TeV

Nothing found so far
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If all these particles are 
too heavy to be accessible 

at the LHC
-> Effective Field Theory 

(EFT) approach
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 EW precision data together with constraints from flavour physics make 
plausible if not likely that there exists a mass gap  between the SM degrees 
of freedom and any new physics threshold.

Scott Willenbrock - Top2010 10
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Dimensional analysis
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effective 4-fermion interaction

@ E<M

In this case, the effects from new physics on process such as tt production can 
be well captured by higher dimensional interactions among the SM particles

-

no bias on what the TeV new physics should be
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Low-energy effective field theory approach to BSM

New interactions are assumed to respect all symmetries of the SM.
Buchmuller-Wyler ‘86

Scott Willenbrock - Top2010 13
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Effective Field Theory

Weinberg 1979

60& operatorsBad news:

Leung, Love, Rao 1984

Buchmuller, Wyler 1986

Good news: Only a few operators contribute to top quark physics
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study of new physics in tt final state in the most general
 model-independent approach

-
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Zhang & Willenbrock’10, Aguilar-Saavedra ‘10 , 
Degrande & al ’10 ...

Dimension 6 operators for top physics

There are only 15 relevant operators:

Rikkert Frederix, University of Zurich
20C. Zhang & S. Willenbrock

operator process

OtW = (q̄σµντI t)φ̃W I
µν (with imaginary coefficient) top decay, single top

OtG = (q̄σµνλAt)φ̃GA
µν (with imaginary coefficient) single top, qq̄, gg → tt̄

OG̃ = gsfABCG̃Aν
µ GBρ

ν GCµ
ρ gg → tt̄

OφG̃ = 1
2 (φ

+φ)G̃A
µνG

Aµν gg → tt̄

Table 2: CP-odd operators that have effects on top-quark processes at order 1/Λ2. Notations are the same
as in Table 1, and G̃µν = εµνρσGρσ.

generation. In single top production, this is the only (independent) four-quark operator that contributes.
However, there are many other four-quark operators with different isospin and color structures [2, 3]. In the
top pair production process qq̄ → tt̄, seven such operators contribute. The details are discussed in Section 4.

In Table 2, the CP-odd operators are listed. These interactions interfere with the SM only if the spin of
the top quark is taken into account. The reason is that the SM conserves CP to a good approximation (the
only CP violation is in the CKM matrix), and the inteference between a CP-odd operator and a CP-even
operator is a CP violation effect. It was shown in Ref. [10] that, in the absence of final-state interactions,
any CP violation observable can assume non-zero value only if it is TN -odd, where TN is the “naive” time
reversal, which means to apply time reversal without interchanging the initial and final states. Thus an
observable is TN -odd if it is proportional to a term of the form εµνρσvµvνvρvσ. If we don’t consider the
top quark spin, v must be the momentum of the particles, and such a term will not be present because
the reactions we consider here involve at most three independent momenta. Therefore top polarimetry is
essential for the study of CP violation. Since the top quark rapidly undergoes two-body weak decay t → Wb
with a time much shorter than the time scale necessary to depolarize the spin, information on the top spin
can be obtained from its decay products. CP violation will be discussed in Section 5.

There is an argument that can be used to neglect some of the new operators [11]. Some new operators can
be generated at tree level from an underlying gauge theory, while others must be generated at loop order.
In general the loop generated operators are suppressed by a factor of 1/16π2. However, the underlying
theory may not be a weakly coupled gauge theory (technicolor, for example), or the loop diagrams could
be enhanced due to the index of a fermion in a large representation. Furthermore, the underlying theory
may not be a gauge theory at all. Fortunately, the effective field theory approach does not depend on the
underlying theory. We will consider all dimension-six operators, without making any assumptions about the
nature of the underlying theory.

We do not make any assumptions about the flavor structure of the dimension-six operators, although we
don’t consider any flavor-changing neutral currents in this paper. The charged-current weak interaction of
the top quark is proportional to Vtb, so the SM rate for top decay and single top production is proportional
to V 2

tb. We write all dimension-six operators in terms of mass-eigenstate fields, so no diagonalization of the
new interactions is necessary. Hence, in charged-current weak interactions, the interference between the SM
amplitude and the new interaction is proportional to VtbCi, where Ci is the (real) coefficient of the dimension-
six Hermitian operator Oi (also recall that Vtb itself is purely real in the standard parameterization [12]).
If the operator is not Hermitian, the coefficient Ci is complex; CP-conserving processes are proportional to
VtbReCi, while CP-violating processes are instead proportional to VtbImCi.

Deviations of top-quark processes from SM predictions have often been discussed using a vertex-function
approach, where the Wtb vertex is parameterized in terms of four unknown form factors [13]. Given our
precision knowledge of the electroweak interaction, this approach is too crude. The effective field theory
approach is well motivated; it takes into consideration the unbroken SU(3)C × SU(2)L ×U(1)Y gauge sym-
metry; it includes contact interactions as well as vertex corrections; it is valid for both on-shell and off-shell
quarks; and it can be used for loop processes [14]. None of these virtues are shared by the vertex function
approach [15].

3

CP-even

CP-odd

A systematic description of all dimension-6 operators relevant 
for top quark physics. There are only 15 relevant operators

At dimension five, the only operator allowed by gauge invariance is [1]

Leff =
cij

Λ
(LiT εφ)C(φT εLj) + h.c. (2)

where Li is the lepton doublet field of the ith generation and φ is the Higgs doublet field. When the Higgs
doublet acquires a vacuum-expectation value, this term gives rise to a Majorana mass for neutrinos. Due to
the tiny neutrino masses, the scale Λ is probably around 1015 GeV. In contrast to this unique dimension-five
operator, there are many independent dimension six operators [2, 3].

Because the top quark is heavy relative to all the other observed SM fermions, we expect that the new
physics at higher energy scales may reveal itself at lower energies through the effective interactions of the top
quark, and deviations with respect to the SM predictions might be detectable. In this paper we will study
the effect of these dimension-six operators on top quark interactions. We focus on three different processes:
top quark decay, single top production, and top pair production. If no deviation is observed experimentally,
then one can place bounds on the coefficients of the dimension six operators.

We choose the effective Lagrangian to realize the weak symmetry linearly, as the precision electroweak
data favors a light Higgs boson. The situation where the weak symmetry is realized nonlinearly is studied in
Ref. [4, 5, 6, 7, 8]. We will use the operator set introduced by Buchmuller and Wyler [3]. In their paper they
categorize all possible gauge-invariant dimension-six operators, and use the equations of motion (EOM) to
simplify them into 80 independent operators (for one generation). Subsequently it was found that several of
these operators are actually not independent [9]. We focus on the operators that have an influence on the
top quark.

We expect the leading modification to SM processes at order 1
Λ2 . In this paper we don’t consider higher

order contributions. We expect the scale Λ to be large (at least larger than the scale we can probe directly)
so 1

Λ4 contributions would be small compared to the uncertainty on top quark measurements. Thus we ignore
all dimension-eight (and higher) operators, as well as effects involving two dimension-six operators.

For any physical observable, the 1
Λ2 contribution comes from the interference between dimension-six

operators and the SM Lagrangian. This contribution might be suppressed for a variety reasons. For example,
since all quark and lepton masses are negligible compared to the top quark mass, a new interaction that
involves a right-handed quark or lepton (except for the top quark) has a very small interference with the
SM charged-current weak interactions, which only involve left-handed fermions. It turns out that although
there are a large number of dimension-six operators, only a few of them have significant effects at order 1

Λ2 .
We list these operators in Tables 1 and 2.

operator process

O(3)
φq = i(φ+τIDµφ)(q̄γµτIq) top decay, single top

OtW = (q̄σµντI t)φ̃W I
µν (with real coefficient) top decay, single top

O(1,3)
qq = (q̄iγµτIqj)(q̄γµτIq) single top

OtG = (q̄σµνλAt)φ̃GA
µν (with real coefficient) single top, qq̄, gg → tt̄

OG = fABCGAν
µ GBρ

ν GCµ
ρ gg → tt̄

OφG = 1
2 (φ

+φ)GA
µνG

Aµν gg → tt̄
7 four-quark operators qq̄ → tt̄

Table 1: CP-even operators that have effects on top-quark processes at order 1/Λ2. Here q is the left-handed
quark doublet, while t is the right-handed top quark. The field φ (φ̃ = εφ∗) is the Higgs boson doublet.
Dµ = ∂µ−igs

1
2λ

AGA
µ −ig 1

2τ
IW I

µ −ig′Y Bµ is the covariant derivative. W I
µν = ∂µW I

ν −∂νW I
µ+gεIJKW J

µ W
K
ν

is the W boson field strength, and GA
µν = ∂µGA

ν −∂νGA
µ +gsfABCGB

µG
C
ν is the gluon field strength. Because

of the Hermiticity of the Lagrangian, the coefficients of these operators are real, except for OtW and OtG.

In Table 1, only one of the four-quark operators, O(1,3)
qq = (q̄iγµτIqj)(q̄γµτIq), is listed explicitly. Here

the superscripts i, j denote the first two quark generations, while q without superscript denotes the third

2
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there are a large number of dimension-six operators, only a few of them have significant effects at order 1

Λ2 .
We list these operators in Tables 1 and 2.

operator process

O(3)
φq = i(φ+τIDµφ)(q̄γµτIq) top decay, single top

OtW = (q̄σµντI t)φ̃W I
µν (with real coefficient) top decay, single top

O(1,3)
qq = (q̄iγµτIqj)(q̄γµτIq) single top

OtG = (q̄σµνλAt)φ̃GA
µν (with real coefficient) single top, qq̄, gg → tt̄

OG = fABCGAν
µ GBρ

ν GCµ
ρ gg → tt̄

OφG = 1
2 (φ

+φ)GA
µνG

Aµν gg → tt̄
7 four-quark operators qq̄ → tt̄

Table 1: CP-even operators that have effects on top-quark processes at order 1/Λ2. Here q is the left-handed
quark doublet, while t is the right-handed top quark. The field φ (φ̃ = εφ∗) is the Higgs boson doublet.
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ν is the gluon field strength. Because

of the Hermiticity of the Lagrangian, the coefficients of these operators are real, except for OtW and OtG.

In Table 1, only one of the four-quark operators, O(1,3)
qq = (q̄iγµτIqj)(q̄γµτIq), is listed explicitly. Here

the superscripts i, j denote the first two quark generations, while q without superscript denotes the third
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operator process

OtW = (q̄σµντI t)φ̃W I
µν (with imaginary coefficient) top decay, single top

OtG = (q̄σµνλAt)φ̃GA
µν (with imaginary coefficient) single top, qq̄, gg → tt̄

OG̃ = gsfABCG̃Aν
µ GBρ

ν GCµ
ρ gg → tt̄

OφG̃ = 1
2 (φ

+φ)G̃A
µνG

Aµν gg → tt̄

Table 2: CP-odd operators that have effects on top-quark processes at order 1/Λ2. Notations are the same
as in Table 1, and G̃µν = εµνρσGρσ.

generation. In single top production, this is the only (independent) four-quark operator that contributes.
However, there are many other four-quark operators with different isospin and color structures [2, 3]. In the
top pair production process qq̄ → tt̄, seven such operators contribute. The details are discussed in Section 4.

In Table 2, the CP-odd operators are listed. These interactions interfere with the SM only if the spin of
the top quark is taken into account. The reason is that the SM conserves CP to a good approximation (the
only CP violation is in the CKM matrix), and the inteference between a CP-odd operator and a CP-even
operator is a CP violation effect. It was shown in Ref. [10] that, in the absence of final-state interactions,
any CP violation observable can assume non-zero value only if it is TN -odd, where TN is the “naive” time
reversal, which means to apply time reversal without interchanging the initial and final states. Thus an
observable is TN -odd if it is proportional to a term of the form εµνρσvµvνvρvσ. If we don’t consider the
top quark spin, v must be the momentum of the particles, and such a term will not be present because
the reactions we consider here involve at most three independent momenta. Therefore top polarimetry is
essential for the study of CP violation. Since the top quark rapidly undergoes two-body weak decay t → Wb
with a time much shorter than the time scale necessary to depolarize the spin, information on the top spin
can be obtained from its decay products. CP violation will be discussed in Section 5.

There is an argument that can be used to neglect some of the new operators [11]. Some new operators can
be generated at tree level from an underlying gauge theory, while others must be generated at loop order.
In general the loop generated operators are suppressed by a factor of 1/16π2. However, the underlying
theory may not be a weakly coupled gauge theory (technicolor, for example), or the loop diagrams could
be enhanced due to the index of a fermion in a large representation. Furthermore, the underlying theory
may not be a gauge theory at all. Fortunately, the effective field theory approach does not depend on the
underlying theory. We will consider all dimension-six operators, without making any assumptions about the
nature of the underlying theory.

We do not make any assumptions about the flavor structure of the dimension-six operators, although we
don’t consider any flavor-changing neutral currents in this paper. The charged-current weak interaction of
the top quark is proportional to Vtb, so the SM rate for top decay and single top production is proportional
to V 2

tb. We write all dimension-six operators in terms of mass-eigenstate fields, so no diagonalization of the
new interactions is necessary. Hence, in charged-current weak interactions, the interference between the SM
amplitude and the new interaction is proportional to VtbCi, where Ci is the (real) coefficient of the dimension-
six Hermitian operator Oi (also recall that Vtb itself is purely real in the standard parameterization [12]).
If the operator is not Hermitian, the coefficient Ci is complex; CP-conserving processes are proportional to
VtbReCi, while CP-violating processes are instead proportional to VtbImCi.

Deviations of top-quark processes from SM predictions have often been discussed using a vertex-function
approach, where the Wtb vertex is parameterized in terms of four unknown form factors [13]. Given our
precision knowledge of the electroweak interaction, this approach is too crude. The effective field theory
approach is well motivated; it takes into consideration the unbroken SU(3)C × SU(2)L ×U(1)Y gauge sym-
metry; it includes contact interactions as well as vertex corrections; it is valid for both on-shell and off-shell
quarks; and it can be used for loop processes [14]. None of these virtues are shared by the vertex function
approach [15].

3

CP-even

CP-odd

A systematic description of all dimension-6 operators relevant 
for top quark physics. There are only 15 relevant operators

At dimension five, the only operator allowed by gauge invariance is [1]

Leff =
cij

Λ
(LiT εφ)C(φT εLj) + h.c. (2)

where Li is the lepton doublet field of the ith generation and φ is the Higgs doublet field. When the Higgs
doublet acquires a vacuum-expectation value, this term gives rise to a Majorana mass for neutrinos. Due to
the tiny neutrino masses, the scale Λ is probably around 1015 GeV. In contrast to this unique dimension-five
operator, there are many independent dimension six operators [2, 3].

Because the top quark is heavy relative to all the other observed SM fermions, we expect that the new
physics at higher energy scales may reveal itself at lower energies through the effective interactions of the top
quark, and deviations with respect to the SM predictions might be detectable. In this paper we will study
the effect of these dimension-six operators on top quark interactions. We focus on three different processes:
top quark decay, single top production, and top pair production. If no deviation is observed experimentally,
then one can place bounds on the coefficients of the dimension six operators.

We choose the effective Lagrangian to realize the weak symmetry linearly, as the precision electroweak
data favors a light Higgs boson. The situation where the weak symmetry is realized nonlinearly is studied in
Ref. [4, 5, 6, 7, 8]. We will use the operator set introduced by Buchmuller and Wyler [3]. In their paper they
categorize all possible gauge-invariant dimension-six operators, and use the equations of motion (EOM) to
simplify them into 80 independent operators (for one generation). Subsequently it was found that several of
these operators are actually not independent [9]. We focus on the operators that have an influence on the
top quark.

We expect the leading modification to SM processes at order 1
Λ2 . In this paper we don’t consider higher

order contributions. We expect the scale Λ to be large (at least larger than the scale we can probe directly)
so 1

Λ4 contributions would be small compared to the uncertainty on top quark measurements. Thus we ignore
all dimension-eight (and higher) operators, as well as effects involving two dimension-six operators.

For any physical observable, the 1
Λ2 contribution comes from the interference between dimension-six

operators and the SM Lagrangian. This contribution might be suppressed for a variety reasons. For example,
since all quark and lepton masses are negligible compared to the top quark mass, a new interaction that
involves a right-handed quark or lepton (except for the top quark) has a very small interference with the
SM charged-current weak interactions, which only involve left-handed fermions. It turns out that although
there are a large number of dimension-six operators, only a few of them have significant effects at order 1

Λ2 .
We list these operators in Tables 1 and 2.

operator process

O(3)
φq = i(φ+τIDµφ)(q̄γµτIq) top decay, single top

OtW = (q̄σµντI t)φ̃W I
µν (with real coefficient) top decay, single top

O(1,3)
qq = (q̄iγµτIqj)(q̄γµτIq) single top

OtG = (q̄σµνλAt)φ̃GA
µν (with real coefficient) single top, qq̄, gg → tt̄

OG = fABCGAν
µ GBρ

ν GCµ
ρ gg → tt̄

OφG = 1
2 (φ

+φ)GA
µνG

Aµν gg → tt̄
7 four-quark operators qq̄ → tt̄

Table 1: CP-even operators that have effects on top-quark processes at order 1/Λ2. Here q is the left-handed
quark doublet, while t is the right-handed top quark. The field φ (φ̃ = εφ∗) is the Higgs boson doublet.
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is the W boson field strength, and GA
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C
ν is the gluon field strength. Because

of the Hermiticity of the Lagrangian, the coefficients of these operators are real, except for OtW and OtG.

In Table 1, only one of the four-quark operators, O(1,3)
qq = (q̄iγµτIqj)(q̄γµτIq), is listed explicitly. Here

the superscripts i, j denote the first two quark generations, while q without superscript denotes the third
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operator process

OtW = (q̄σµντI t)φ̃W I
µν (with imaginary coefficient) top decay, single top

OtG = (q̄σµνλAt)φ̃GA
µν (with imaginary coefficient) single top, qq̄, gg → tt̄

OG̃ = gsfABCG̃Aν
µ GBρ

ν GCµ
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Table 2: CP-odd operators that have effects on top-quark processes at order 1/Λ2. Notations are the same
as in Table 1, and G̃µν = εµνρσGρσ.

generation. In single top production, this is the only (independent) four-quark operator that contributes.
However, there are many other four-quark operators with different isospin and color structures [2, 3]. In the
top pair production process qq̄ → tt̄, seven such operators contribute. The details are discussed in Section 4.

In Table 2, the CP-odd operators are listed. These interactions interfere with the SM only if the spin of
the top quark is taken into account. The reason is that the SM conserves CP to a good approximation (the
only CP violation is in the CKM matrix), and the inteference between a CP-odd operator and a CP-even
operator is a CP violation effect. It was shown in Ref. [10] that, in the absence of final-state interactions,
any CP violation observable can assume non-zero value only if it is TN -odd, where TN is the “naive” time
reversal, which means to apply time reversal without interchanging the initial and final states. Thus an
observable is TN -odd if it is proportional to a term of the form εµνρσvµvνvρvσ. If we don’t consider the
top quark spin, v must be the momentum of the particles, and such a term will not be present because
the reactions we consider here involve at most three independent momenta. Therefore top polarimetry is
essential for the study of CP violation. Since the top quark rapidly undergoes two-body weak decay t → Wb
with a time much shorter than the time scale necessary to depolarize the spin, information on the top spin
can be obtained from its decay products. CP violation will be discussed in Section 5.

There is an argument that can be used to neglect some of the new operators [11]. Some new operators can
be generated at tree level from an underlying gauge theory, while others must be generated at loop order.
In general the loop generated operators are suppressed by a factor of 1/16π2. However, the underlying
theory may not be a weakly coupled gauge theory (technicolor, for example), or the loop diagrams could
be enhanced due to the index of a fermion in a large representation. Furthermore, the underlying theory
may not be a gauge theory at all. Fortunately, the effective field theory approach does not depend on the
underlying theory. We will consider all dimension-six operators, without making any assumptions about the
nature of the underlying theory.

We do not make any assumptions about the flavor structure of the dimension-six operators, although we
don’t consider any flavor-changing neutral currents in this paper. The charged-current weak interaction of
the top quark is proportional to Vtb, so the SM rate for top decay and single top production is proportional
to V 2

tb. We write all dimension-six operators in terms of mass-eigenstate fields, so no diagonalization of the
new interactions is necessary. Hence, in charged-current weak interactions, the interference between the SM
amplitude and the new interaction is proportional to VtbCi, where Ci is the (real) coefficient of the dimension-
six Hermitian operator Oi (also recall that Vtb itself is purely real in the standard parameterization [12]).
If the operator is not Hermitian, the coefficient Ci is complex; CP-conserving processes are proportional to
VtbReCi, while CP-violating processes are instead proportional to VtbImCi.

Deviations of top-quark processes from SM predictions have often been discussed using a vertex-function
approach, where the Wtb vertex is parameterized in terms of four unknown form factors [13]. Given our
precision knowledge of the electroweak interaction, this approach is too crude. The effective field theory
approach is well motivated; it takes into consideration the unbroken SU(3)C × SU(2)L ×U(1)Y gauge sym-
metry; it includes contact interactions as well as vertex corrections; it is valid for both on-shell and off-shell
quarks; and it can be used for loop processes [14]. None of these virtues are shared by the vertex function
approach [15].
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where Li is the lepton doublet field of the ith generation and φ is the Higgs doublet field. When the Higgs
doublet acquires a vacuum-expectation value, this term gives rise to a Majorana mass for neutrinos. Due to
the tiny neutrino masses, the scale Λ is probably around 1015 GeV. In contrast to this unique dimension-five
operator, there are many independent dimension six operators [2, 3].

Because the top quark is heavy relative to all the other observed SM fermions, we expect that the new
physics at higher energy scales may reveal itself at lower energies through the effective interactions of the top
quark, and deviations with respect to the SM predictions might be detectable. In this paper we will study
the effect of these dimension-six operators on top quark interactions. We focus on three different processes:
top quark decay, single top production, and top pair production. If no deviation is observed experimentally,
then one can place bounds on the coefficients of the dimension six operators.

We choose the effective Lagrangian to realize the weak symmetry linearly, as the precision electroweak
data favors a light Higgs boson. The situation where the weak symmetry is realized nonlinearly is studied in
Ref. [4, 5, 6, 7, 8]. We will use the operator set introduced by Buchmuller and Wyler [3]. In their paper they
categorize all possible gauge-invariant dimension-six operators, and use the equations of motion (EOM) to
simplify them into 80 independent operators (for one generation). Subsequently it was found that several of
these operators are actually not independent [9]. We focus on the operators that have an influence on the
top quark.

We expect the leading modification to SM processes at order 1
Λ2 . In this paper we don’t consider higher

order contributions. We expect the scale Λ to be large (at least larger than the scale we can probe directly)
so 1

Λ4 contributions would be small compared to the uncertainty on top quark measurements. Thus we ignore
all dimension-eight (and higher) operators, as well as effects involving two dimension-six operators.

For any physical observable, the 1
Λ2 contribution comes from the interference between dimension-six

operators and the SM Lagrangian. This contribution might be suppressed for a variety reasons. For example,
since all quark and lepton masses are negligible compared to the top quark mass, a new interaction that
involves a right-handed quark or lepton (except for the top quark) has a very small interference with the
SM charged-current weak interactions, which only involve left-handed fermions. It turns out that although
there are a large number of dimension-six operators, only a few of them have significant effects at order 1
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We list these operators in Tables 1 and 2.
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Table 1: CP-even operators that have effects on top-quark processes at order 1/Λ2. Here q is the left-handed
quark doublet, while t is the right-handed top quark. The field φ (φ̃ = εφ∗) is the Higgs boson doublet.
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We focus on top-philic new physics (and therefore ignore interactions that would 
only affect the standard gluon vertex                                   ) 

We are left with only two classes of dim-6 gauge invariant operators         
(when working at order O(1/Λ2))
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Figure 3: One particle exchange contributions to Ltt̄ in Eq. (20): (a) the five four-fermion operators
can be directly associated with the exchange of a spin-1 resonance once Fierz transformations are
used, (b) the single two-fermion operator Ohg can be indirectly associated with the exchange of a
spin-0 or spin-2 resonance coupled to two gluons via a fermion loop.

loop [47]. However, SU(2) gauge invariance requires to consider loop corrections induced
by a dimension-eight operator like

(

HQ̄t
) (

HQ̄t
)

with the Higgs field H replaced by its vev
(see Fig. 2b).

Similarly, the connection within resonance models is quite straightforward using the
standard Fierz relations of App. A. The exchanges of heavy vectors and scalars lead to four-
fermion operators (explicit formulas are given for instance in Ref. [20]) but cannot contribute
to the top chromo-magnetic moment at tree-level as a consequence of SU(3)c gauge invariance
(see Fig. 3a). Only higher-dimension effective operators quadratic in the gluon field-strength
can be induced in this frame. For example, a heavy scalar or tensor induces at tree-level the
operator

(

HQ̄t + h.c.
)

GµνGµν or
(

HQ̄t − h.c.
)

GµνG̃µν (see Fig. 3b). So, the operator Ohg

can only be generated at the loop-level and is suppressed in resonance models.
Finally, note that a generic prediction of recent models of Higgs and top compositeness

is the existence of fermionic top partners (“custodians”) whose mass is below the mass scale
of the vector resonances mρ [48–50]. They do not appear in our low-energy effective field
theory approach. However, they could be produced singly or in pairs at the LHC, and decay
either into tZ, tH , bW or tW , therefore possibly making a new physics “background” to
tt̄ + X final states. We leave the study of these effects and their description in terms of
effective operators to future investigations.

3 Top pair production cross section

We now move to the core of our model-independent analysis whose goal is to evaluate the
LHC potential in probing new physics in top pair production beyond the Tevatron’s reach.

3.1 Partonic differential cross sections

As already mentioned, top pair production is calculated at the same order in 1/Λ as the
Lagrangian in Eq. (20)

|M |2 = |MSM |2 + 2"(MSMM∗
NP ) + O

(

1

Λ4

)

, (26)

9

We calculate top pair production at order  O(1/Λ2)

i.e. we assume new physics manifests 
itself at low energy  only through 
operators interfering with the SM

would only affect the standard gluon vertices like for instance the interactions generated by
the operator OG = fABCGA

µνG
B νρGC

ρ
µ (see Refs. [24, 35–37] for a study of its effects on top

pair production). Hence we consider the set of operators which affect the tt̄ production at
tree-level by interference with the SM amplitudes. Both at the Tevatron and at the LHC,
the dominant SM amplitudes are those involving QCD in quark-antiquark annihilation or
gluon fusion. Therefore we shall neglect all new interactions that could interfere only with
SM weak processes like qq̄ → Z(γ) → tt̄. Our analysis aims at identifying the effects of the
new physics on top pair production, so it ignores the operators which affect the decay of
the top [24, 28, 38]. We are then left with only two classes of dimension-six gauge-invariant
operators [33]:

• operators with a top and an antitop and one or two gluons, namely

Ogt =
[

t̄γµTADνt
]

GA
µν ,

OgQ =
[

Q̄γµTADνQ
]

GA
µν ,

Ohg =
[(

HQ̄
)

σµνTAt
]

GA
µν , (1)

where Q = (tL, bL) denotes the left-handed weak doublet of the third quark generation,
t is the right-handed top quark, TA are the generators of SU(3) in the fundamental
representations normalized to tr(TATB) = δAB/2.

• four-fermion operators with a top and an antitop together with a pair of light quark
and antiquark that can be organized following their chiral structures:

L̄LL̄L:

O
(8,1)
Qq =

(

Q̄γµTAQ
)(

q̄γµT
Aq

)

,

O
(8,3)
Qq =

(

Q̄γµTAσIQ
)(

q̄γµT
AσIq

)

, (2)

R̄RR̄R:

O
(8)
tu =

(

t̄γµTAt
)(

ūγµT
Au

)

,

O
(8)
td =

(

t̄γµTAt
)(

d̄γµTAd
)

, (3)

L̄LR̄R:

O
(8)
Qu =

(

Q̄γµTAQ
)(

ūγµTAu
)

,

O
(8)
Qd =

(

Q̄γµTAQ
)(

d̄γµT
Ad

)

,

O
(8)
tq =

(

q̄γµTAq
)(

t̄γµT
At

)

, (4)

L̄RL̄R:

O
(8)
d =

(

Q̄TAt
)(

q̄T Ad
)

, (5)

where σI are the Pauli matrices (normalized to tr(σIσJ) = 2δIJ), q and u and d are
respectively the left- and right-handed components of the first two generations.
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● 4-fermion op.

: negligible (QCD is chirality diagonal)

and the forward-backward asymmetry will depend on the combination

cAa = cRa − cLa with

{

cRa = −ctq/2 + (ctu + ctd)/4

cLa = −c(8,1)
Qq /2 + (cQu + cQd)/4.

(14)

The difference
cAv = cRv − cLv (15)

can only contribute to spin-dependent observables (see Section 3.5).
The isospin-1 sector is spanned by the three combinations:

ORr = O
(8)
tu − O

(8)
td , OLr = O

(8)
Qu − O

(8)
Qd and O

(8,3)
Qq . (16)

Again, parity arguments lead to the conclusion that the total cross section can only depend
on the combination

c′V v = (ctu − ctd)/2 + (cQu − cQd)/2 + c(8,3)
Qq , (17)

while the forward-backward asymmetry will only receive a contribution proportional to

c′Aa = (ctu − ctd)/2 − (cQu − cQd)/2 + c(8,3)
Qq . (18)

and spin-dependent observables will depend on (see App. C)

c′Av = (ctu − ctd)/2 − (cQu − cQd)/2 − c(8,3)
Qq . (19)

Numerically, we shall see in Section 3.2 that the isospin-0 sector gives a larger contribution
to the observables we are considering than the isospin-1 sector. This is due to the fact that a
sizeable contribution to these observables is coming from a phase-space region near threshold
where the up- and down-quark contributions are of the same order.

It is interesting to note that, in composite models, where the strong sector is usually
invariant under the weak-custodial symmetry SO(4) → SO(3) [41], the right-handed up
and down quarks certainly transform as a doublet of the SU(2)R symmetry, and therefore
cQu = cQd. There are however various ways to embed the right-handed top quarks into
a SO(4) representation [32]: if it is a singlet, then ctu = ctd also and the isospin-1 sector

reduces to the operator O
(8,3)
Qq only.

In summary, the relevant effective Lagrangian for tt̄ production contains a single two-
fermion operator and seven four-fermion operators conveniently written as:

Ltt̄ = +
1

Λ2

(

(chgOhg + h.c.) + (cR vOR v + cR aOR a + c′RrO
′
Rr + R ↔ L) + c(8,3)

Qq O
(8,3)
Qq

)

. (20)

The vertices arising from the dimension-six operators given in Eq. (20) relevant for top
pair production at hadron colliders are depicted in Fig. 1.
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Figure 1: A Feynman representation of the relevant operators for tt̄ production at hadron colliders.
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to the observables we are considering than the isospin-1 sector. This is due to the fact that a
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It is interesting to note that, in composite models, where the strong sector is usually
invariant under the weak-custodial symmetry SO(4) → SO(3) [41], the right-handed up
and down quarks certainly transform as a doublet of the SU(2)R symmetry, and therefore
cQu = cQd. There are however various ways to embed the right-handed top quarks into
a SO(4) representation [32]: if it is a singlet, then ctu = ctd also and the isospin-1 sector

reduces to the operator O
(8,3)
Qq only.

In summary, the relevant effective Lagrangian for tt̄ production contains a single two-
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The vertices arising from the dimension-six operators given in Eq. (20) relevant for top
pair production at hadron colliders are depicted in Fig. 1.
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We are left with only two classes of dim-6 gauge invariant operators         
(when working at order O(1/Λ2))
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Figure 2. Typical one loop contributions of (a) the dimension-six operators (2.22)–(2.24) leading
to δcRv and δcLv respectively once the equation of motion (2.6) is used, and (b) the dimension-eight
operator

(

HQ̄t
) (
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)

leading to δchg if one chirality-flip is considered in the loop.
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Figure 3. One particle exchange contributions to Ltt̄ in eq. (2.20): (a) the five four-fermion oper-
ators can be directly associated with the exchange of a spin-1 resonance once Fierz transformations
are used, (b) the single two-fermion operator Ohg can be indirectly associated with the exchange of
a spin-0 or spin-2 resonance coupled to two gluons via a fermion loop.

Similarly, the connection within resonance models is quite straightforward using the

standard Fierz relations of appendix A. The exchanges of heavy vectors and scalars lead

to four-fermion operators (explicit formulas are given for instance in ref. [20]) but cannot

contribute to the top chromo-magnetic moment at tree-level as a consequence of SU(3)c
gauge invariance (see figure 3a). Only higher-dimension effective operators quadratic in

the gluon field-strength can be induced in this frame. For example, a heavy scalar or

tensor induces at tree-level the operator
(

HQ̄t + h.c.
)

GµνGµν or
(

HQ̄t − h.c.
)

GµνG̃µν (see

figure 3b). So, the operator Ohg can only be generated at the loop-level and is suppressed

in resonance models.
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the effective Lagrangian obtained after integrating out some heavy resonances.

δijδkl =
1

2
σI

ilσ
I
kj +

1

2
δilδkj , (64)

δabδcd = 2TA
adT

A
cb +

1

3
δadδcb , (65)

(γµPL/R)α
β(γµPL/R)γ

δ = −(γµPL/R)α
δ(γµPL/R)γ

β (66)

(γµPR)α
β(γµPL)γ

δ = 2 (PL)α
δ(PR)γ

β , (67)

(PL/R)α
β(PL/R)γ

δ = −
1

2
(PL/R)α

δ(PL/R)γ
β +

1

8
(γµνPL/R)α

δ(γµνPL/R)γ
β , (68)

where PL/R = (1 ∓ γ5)/2 are the usual chirality projectors and γµν = 1
2 [γµ, γν ].

B Feynman diagrams for tt̄ production at order O
(

Λ−2
)

At the O(Λ−2) order, the two parton-level cross sections for tt̄ production follow from the
Feynman diagrams depicted in Fig. 14 and 15.
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+

Figure 14: Feynman diagrams for gg → tt̄ up to O
(

Λ−2
)

. The dark blobs denote interactions
generated by the operator Ohg.
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Figure 3: One particle exchange contributions to Ltt̄ in Eq. (20): (a) the five four-fermion operators
can be directly associated with the exchange of a spin-1 resonance once Fierz transformations are
used, (b) the single two-fermion operator Ohg can be indirectly associated with the exchange of a
spin-0 or spin-2 resonance coupled to two gluons via a fermion loop.

loop [47]. However, SU(2) gauge invariance requires to consider loop corrections induced
by a dimension-eight operator like

(

HQ̄t
) (

HQ̄t
)

with the Higgs field H replaced by its vev
(see Fig. 2b).

Similarly, the connection within resonance models is quite straightforward using the
standard Fierz relations of App. A. The exchanges of heavy vectors and scalars lead to four-
fermion operators (explicit formulas are given for instance in Ref. [20]) but cannot contribute
to the top chromo-magnetic moment at tree-level as a consequence of SU(3)c gauge invariance
(see Fig. 3a). Only higher-dimension effective operators quadratic in the gluon field-strength
can be induced in this frame. For example, a heavy scalar or tensor induces at tree-level the
operator

(

HQ̄t + h.c.
)

GµνGµν or
(

HQ̄t − h.c.
)

GµνG̃µν (see Fig. 3b). So, the operator Ohg

can only be generated at the loop-level and is suppressed in resonance models.
Finally, note that a generic prediction of recent models of Higgs and top compositeness

is the existence of fermionic top partners (“custodians”) whose mass is below the mass scale
of the vector resonances mρ [48–50]. They do not appear in our low-energy effective field
theory approach. However, they could be produced singly or in pairs at the LHC, and decay
either into tZ, tH , bW or tW , therefore possibly making a new physics “background” to
tt̄ + X final states. We leave the study of these effects and their description in terms of
effective operators to future investigations.

3 Top pair production cross section

We now move to the core of our model-independent analysis whose goal is to evaluate the
LHC potential in probing new physics in top pair production beyond the Tevatron’s reach.

3.1 Partonic differential cross sections

As already mentioned, top pair production is calculated at the same order in 1/Λ as the
Lagrangian in Eq. (20)

|M |2 = |MSM |2 + 2"(MSMM∗
NP ) + O

(

1

Λ4

)

, (26)
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at low energy  only through operators 

interfering with the SM
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Figure 15: Feynman diagrams for qq̄ → tt̄ up to O
(

Λ−2
)

. The diagram in the middle originates

from the four-fermion interactions induced by the operators OL/Rv , OL/Ra and O
(8,3)
Qq . The diagram

on the right is the contribution from the operator Ohg.

C Helicity cross sections and mtt̄ distribution

As explained in Section 2.2, when summed over the helicities of the final top, the cross section
for the tt̄ production depends only on the sum cV v = cRv+cLv (and on the suppressed isospin-
1 sector contribution c′V v defined in Eq.(17)). However the individual helicity cross sections
are sensitive to cRv and cLv individually since at high energy ORv (OLv) should produce
mainly right (left) handed top and left (right) handed antitop. Explicitly, the helicity cross
sections are given by (we recall that cAv = cRv − cLv)

σRR(gg → tt̄) =
πα2

s

24 (4m2 − s) s3

{

(

16m4
t + 58sm2

t + s2
)

log

(

s +
√

s (s − 4m2
t )

s −
√

s (s − 4m2
t )

)

m2
t

−2
√

s (s − 4m2
t )

(

62m4
t − 7sm2

t + 2s2
)

−
chg

gsΛ2
2
√

2svmt

[

√

s (s − 4m2
t )

(

14m2
t + 13s

)

+
(

4m4
t − 34m2

t s
)

log

(

s +
√

s (s − 4m2
t )

s −
√

s (s − 4m2
t )

) ]}

,

σLL(gg → tt̄) = σRR(gg → tt̄),

σRL(gg → tt̄) =

(

1 +
chg

gsΛ2
4
√

2mtv

)

πα2
s ×

11
√

s (s − 4m2
t ) (m2

t − s) + (2m4
t − sm2

t − 4s2) log

(

s−
q

s(s−4m2
t)

s+
q

s(s−4m2
t)

)

24 (s − 4m2
t ) s2

,

σLR(gg → tt̄) = σRL(gg → tt̄). (69)
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where MNP represents the matrix element of all the (new physics) dimension-six operators
introduced in Section 2.

From the Lagrangian in Eq. (20), the two parton-level cross sections for tt̄ production
at O (Λ−2) follow from the Feynman diagrams depicted in Fig. 14 and 15 of App. B. Their
expressions are (v = 246 GeV):

dσ

dt
(qq̄ → tt̄) =

dσSM

dt

(

1 +
cV v ±

c′
V v

2

g2
s

s

Λ2

)

+
1

Λ2

αs

9s2

((

cAa ±
c′Aa

2

)

s(τ2 − τ1) + 4gschg

√
2vmt

)

(27)

dσ

dt
(gg → tt̄) =

dσSM

dt
+
√

2αsgs
vmt

s2

chg

Λ2

(

1

6τ1τ2
−

3

8

)

(28)

where the upper (lower) sign is for the up (down) quarks and

dσSM

dt
(qq̄ → tt̄) =

4πα2
s

9s2

(

τ 2
1 + τ 2

2 +
ρ

2

)

(29)

dσSM

dt
(gg → tt̄) =

πα2
s

s2

(

1

6τ1τ2
−

3

8

)

(ρ + τ 2
1 + τ 2

2 −
ρ2

4τ1τ2
) (30)

with τ1 =
m2

t − t

s
, τ2 =

m2
t − u

s
, ρ =

4m2
t

s
. (31)

The Mandelstam parameter t is related, in the tt̄ center-of-mass frame, to the angle θ between

the momenta of the incoming parton and the outgoing top quark by (β =
√

1 − 4m2

s )

m2
t − t =

s

2
(1 − β cos θ) . (32)

All the contributions to the tt̄ differential cross section but the one proportional to cAa ±
c′
Aa

2
are invariant under θ → π − θ.

Similar results have already been derived in the literature. For instance, these cross sec-
tions were recently fully computed in Ref. [24] and consistent with our expressions with the
identifications given in Table 1. This non exhaustive table also gives the correspondences
with respect to some other recent works [19–21, 51]. Note that the contribution of the
chromomagnetic operator Ohg has been extensively discussed in the literature [14–17] and
recently revisited for both processes in Ref. [21, 22].

As can be seen from Eqs. (30) and (28), the new physics and the SM contributions for
gluon fusion have a common factor. In fact, this common factor is what is mainly responsible
for the shape of the distributions of the SM. This is the reason why, as we will stress again
in the following, the operator Ohg can hardly be distinguished from the SM in gluon fusion.

Equation (27) shows that only two kinds of four-fermion operators actually contribute
to the differential cross-section after averaging over the final state spins:

• the first one is responsible for the even part in the scattering angle proportional to

cV v ±
c′
V v

2

t̄γµTAtq̄γµTAq (33)

where here t and q = u, d stand for the full 4-component Dirac spinor;
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From the Lagrangian in Eq. (20), the two parton-level cross sections for tt̄ production
at O (Λ−2) follow from the Feynman diagrams depicted in Fig. 14 and 15 of App. B. Their
expressions are (v = 246 GeV):

dσ

dt
(qq̄ → tt̄) =
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dt
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V v

2

g2
s
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Λ2
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+
1

Λ2

αs

9s2

((

cAa ±
c′Aa

2

)

s(τ2 − τ1) + 4gschg

√
2vmt
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(27)

dσ

dt
(gg → tt̄) =

dσSM

dt
+
√

2αsgs
vmt

s2

chg

Λ2

(

1

6τ1τ2
−

3

8

)

(28)

where the upper (lower) sign is for the up (down) quarks and

dσSM

dt
(qq̄ → tt̄) =

4πα2
s

9s2

(

τ 2
1 + τ 2

2 +
ρ

2

)

(29)

dσSM

dt
(gg → tt̄) =

πα2
s

s2

(

1

6τ1τ2
−

3

8

)

(ρ + τ 2
1 + τ 2

2 −
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4τ1τ2
) (30)

with τ1 =
m2

t − t

s
, τ2 =

m2
t − u

s
, ρ =

4m2
t

s
. (31)

The Mandelstam parameter t is related, in the tt̄ center-of-mass frame, to the angle θ between

the momenta of the incoming parton and the outgoing top quark by (β =
√

1 − 4m2

s )

m2
t − t =

s

2
(1 − β cos θ) . (32)

All the contributions to the tt̄ differential cross section but the one proportional to cAa ±
c′
Aa

2
are invariant under θ → π − θ.

Similar results have already been derived in the literature. For instance, these cross sec-
tions were recently fully computed in Ref. [24] and consistent with our expressions with the
identifications given in Table 1. This non exhaustive table also gives the correspondences
with respect to some other recent works [19–21, 51]. Note that the contribution of the
chromomagnetic operator Ohg has been extensively discussed in the literature [14–17] and
recently revisited for both processes in Ref. [21, 22].

As can be seen from Eqs. (30) and (28), the new physics and the SM contributions for
gluon fusion have a common factor. In fact, this common factor is what is mainly responsible
for the shape of the distributions of the SM. This is the reason why, as we will stress again
in the following, the operator Ohg can hardly be distinguished from the SM in gluon fusion.

Equation (27) shows that only two kinds of four-fermion operators actually contribute
to the differential cross-section after averaging over the final state spins:

• the first one is responsible for the even part in the scattering angle proportional to

cV v ±
c′
V v

2

t̄γµTAtq̄γµTAq (33)

where here t and q = u, d stand for the full 4-component Dirac spinor;
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Only two linear combinations of 4-fermion operators actually contribute to 
the differential cross section after averaging over the final state spins
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scattering angle 
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odd part in the 
scattering angle θ
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As can be seen from Eqs. (30) and (28), the new physics and the SM contributions for
gluon fusion have a common factor. In fact, this common factor is what is mainly responsible
for the shape of the distributions of the SM. This is the reason why, as we will stress again
in the following, the operator Ohg can hardly be distinguished from the SM in gluon fusion.

Equation (27) shows that only two kinds of four-fermion operators actually contribute
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comes from comes from

Ref. [24] Ref. [19] Ref. [51] Ref. [20] Ref. [21]

chg 2CtG g1gs
1
2C33

uGφ

cV v
1
4

(

C1
u + C2

u + C1
d + C2

d

)

−g2g2
s(*)

g2
s

4 (κu
R + κd

R + κu
L + κd

L)(*) g2
s

2 (C1 + C2)

cAa
1
4

(

C1
u − C2

u + C1
d − C2

d

) g2
s

4 (κu
R + κd

R + κu
L + κd

L)(*) g2
s

2 (C1 − C2)

c′V v
1
2

(

C1
u + C2

u − C1
d − C2

d

) g2
s

2 (κu
R − κd

R + κu
L − κd

L)(*)

c′Aa
1
2

(

C1
u − C2

u − C1
d + C2

d

) g2
s

2 (κu
R − κd

R + κu
L − κd

L)(*)

Table 1: Dictionary between our parameters and those used in recent papers on the subject. They

all agree eventually up to a sign for those that are labeled by a (*). For Ref. [24], C(8,3)
qq = c(8,3)

Qq .
Blank entries mean that the corresponding operators were not considered.

• the second one is responsible for the odd part in the scattering angle proportional to
cAa ±

c′
Aa

2

t̄γµγ5T
Atq̄γµγ5T

Aq. (34)

3.2 Total cross section

3.2.1 LHC–Tevatron complementarity

Since the dependence on cAa and c′Aa vanishes after the integration over the kinematical
variable t, the total cross section depends thus only on the three parameters chg cV v and
c′V v. Moreover, the tt̄ production by gluon fusion only depends on the coefficient of the
operator Ohg. Our results for tt̄ production are obtained by the convolution of the analytic
differential cross section of Eqs. (27) and (28) with the pdf (taking CTEQ6L1 [52]). We have
also implemented the new vertices in MadGraph [53] and used them to validate our results.
At leading order, we have

— at the LHC (
√

s = 14 TeV):

σ (gg → tt̄) /pb = 466+146
−103 +

(

127+31
−23

)

chg

(

1 TeV

Λ

)2

, (35)

σ (qq̄ → tt̄) /pb = 72+16
−12 +

[(

15+2
−1

)

cV v +
(

17+3
−2

)

chg +
(

1.32+0.12
−0.12

)

c′V v

]

(

1 TeV

Λ

)2

, (36)

σ (pp → tt̄) /pb = 538+162
−115 +

[(

15+2
−1

)

cV v +
(

144+34
−25

)

chg +
(

1.32+0.12
−0.12

)

c′V v

]

(

1 TeV

Λ

)2

. (37)

— at the LHC (
√

s = 7 TeV):

σ (pp → tt̄) /pb = 94+22
−17 +

[(

4.5+0.7
−0.6

)

cV v +
(

25+7
−5

)

chg +
(

0.48+0.068
−0.056

)

c′V v

]

(

1 TeV

Λ

)2

. (38)
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This dependence vanishes 
after integration over t

some axial combination of 
operators is asymmetric 
under q <-> q -

some vector combination 
of operators that is 
symmetric under q <-> q -

where i runs over the seven self-hermitian four-fermion operators of Eqs. (2)–(4).
In Eq. (9), the coefficient chg might be complex. However, since we are concerned with

CP-invariant observables, only its real part enters in the interference with the SM processes
and therefore we shall assume in our analysis that chg is real. This coefficient corresponds
to a chromomagnetic moment for the top quark.

2.2 The relevant operators

In Eq. (9), we have identified eight independent top-philic operators. Yet, additional simple
considerations are going to show that physical observables like the tt̄ production total cross
section, the mtt̄ invariant-mass distribution or the forward-backward asymmetry, depend
only on specific linear combinations of these operators.

The seven four-fermion operators can be combined to form linear combinations with
definite SU(2) isospin quantum numbers. In the isospin-0 sector, it is further convenient to
define axial and vector combinations of the light quarks:

ORv = O
(8)
tu + O

(8)
td + O

(8)
tq , ORa = O

(8)
tu + O

(8)
td − O

(8)
tq , (10)

and similar operators involving the left-handed top quarks:

OLv = O
(8)
Qu + O

(8)
Qd + O

(8,1)
Qq , OLa = O

(8)
Qu + O

(8)
Qd − O

(8,1)
Qq . (11)

The reason is that the axial operators are asymmetric under the exchange of the quark and
antiquark while the vector operators are symmetric2:

[

ψ̄ (k1) γµγ5TAψ (k2)
]

= −
[

ψ̄c (k2) γµγ5TAψc (k1)
]

,
[

ψ̄ (k1) γµTAψ (k2)
]

=
[

ψ̄c (k2) γµTAψc (k1)
]

.
(12)

Therefore, the interferences of ORa and OLa with the SM will be odd under the exchange of the
momenta of the initial partons and these axial operators can only contribute to observables
that are odd functions of the scattering angle and certainly not to the total cross section.
On the contrary, the operators ORv and OLv are even functions of the scattering angle and
can contribute to σtt̄.

In addition, the operators ORv and OLv will obviously produce the same amount of top
pairs but with opposite chirality. Consequently, the spin-independent observables associated
to the tt̄ production are expected to depend only on the sum ORv + OLv while the difference
ORv − OLv will only contribute to spin-dependent observables. Similarly, but with a sign
flip, only their difference, ORa −OLa, can contribute to spin-independent observables and in
particular to the tt̄ differential cross section after summing over the spins. The orthogonal
combination ORa + OLa could contribute to spin-dependent observables which are odd func-
tions of the scattering angle, but we shall not consider any observable of this type in our
analysis.

Therefore, we expect a dependence of the total pair production cross section on the sum

cV v = cRv + cLv with

{

cRv = ctq/2 + (ctu + ctd)/4

cLv = c(8,1)
Qq /2 + (cQu + cQd)/4

(13)

2The matrices Cγµγ5 are antisymmetric but the matrices Cγµ are symmetric, C being the charge conju-
gation matrix.
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vector combination of the light quarks
involving the RH and LH top quarks

axial combination of the light quarks  
involving the RH and LH top quarks

and the forward-backward asymmetry will depend on the combination

cAa = cRa − cLa with

{

cRa = −ctq/2 + (ctu + ctd)/4

cLa = −c(8,1)
Qq /2 + (cQu + cQd)/4.

(14)

The difference
cAv = cRv − cLv (15)

can only contribute to spin-dependent observables (see Section 3.5).
The isospin-1 sector is spanned by the three combinations:

ORr = O
(8)
tu − O

(8)
td , OLr = O

(8)
Qu − O

(8)
Qd and O

(8,3)
Qq . (16)

Again, parity arguments lead to the conclusion that the total cross section can only depend
on the combination

c′V v = (ctu − ctd)/2 + (cQu − cQd)/2 + c(8,3)
Qq , (17)

while the forward-backward asymmetry will only receive a contribution proportional to

c′Aa = (ctu − ctd)/2 − (cQu − cQd)/2 + c(8,3)
Qq . (18)

and spin-dependent observables will depend on (see App. C)

c′Av = (ctu − ctd)/2 − (cQu − cQd)/2 − c(8,3)
Qq . (19)

Numerically, we shall see in Section 3.2 that the isospin-0 sector gives a larger contribution
to the observables we are considering than the isospin-1 sector. This is due to the fact that a
sizeable contribution to these observables is coming from a phase-space region near threshold
where the up- and down-quark contributions are of the same order.

It is interesting to note that, in composite models, where the strong sector is usually
invariant under the weak-custodial symmetry SO(4) → SO(3) [41], the right-handed up
and down quarks certainly transform as a doublet of the SU(2)R symmetry, and therefore
cQu = cQd. There are however various ways to embed the right-handed top quarks into
a SO(4) representation [32]: if it is a singlet, then ctu = ctd also and the isospin-1 sector

reduces to the operator O
(8,3)
Qq only.

In summary, the relevant effective Lagrangian for tt̄ production contains a single two-
fermion operator and seven four-fermion operators conveniently written as:

Ltt̄ = +
1

Λ2

(

(chgOhg + h.c.) + (cR vOR v + cR aOR a + c′RrO
′
Rr + R ↔ L) + c(8,3)

Qq O
(8,3)
Qq

)

. (20)

The vertices arising from the dimension-six operators given in Eq. (20) relevant for top
pair production at hadron colliders are depicted in Fig. 1.
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Figure 1: A Feynman representation of the relevant operators for tt̄ production at hadron colliders.

6

(contribution from the 8 operators)
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where the up- and down-quark contributions are of the same order.
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where i runs over the seven self-hermitian four-fermion operators of Eqs. (2)–(4).
In Eq. (9), the coefficient chg might be complex. However, since we are concerned with

CP-invariant observables, only its real part enters in the interference with the SM processes
and therefore we shall assume in our analysis that chg is real. This coefficient corresponds
to a chromomagnetic moment for the top quark.

2.2 The relevant operators

In Eq. (9), we have identified eight independent top-philic operators. Yet, additional simple
considerations are going to show that physical observables like the tt̄ production total cross
section, the mtt̄ invariant-mass distribution or the forward-backward asymmetry, depend
only on specific linear combinations of these operators.

The seven four-fermion operators can be combined to form linear combinations with
definite SU(2) isospin quantum numbers. In the isospin-0 sector, it is further convenient to
define axial and vector combinations of the light quarks:

ORv = O
(8)
tu + O

(8)
td + O

(8)
tq , ORa = O

(8)
tu + O

(8)
td − O

(8)
tq , (10)

and similar operators involving the left-handed top quarks:

OLv = O
(8)
Qu + O

(8)
Qd + O

(8,1)
Qq , OLa = O

(8)
Qu + O

(8)
Qd − O

(8,1)
Qq . (11)

The reason is that the axial operators are asymmetric under the exchange of the quark and
antiquark while the vector operators are symmetric2:

[

ψ̄ (k1) γµγ5TAψ (k2)
]

= −
[

ψ̄c (k2) γµγ5TAψc (k1)
]

,
[

ψ̄ (k1) γµTAψ (k2)
]

=
[

ψ̄c (k2) γµTAψc (k1)
]

.
(12)

Therefore, the interferences of ORa and OLa with the SM will be odd under the exchange of the
momenta of the initial partons and these axial operators can only contribute to observables
that are odd functions of the scattering angle and certainly not to the total cross section.
On the contrary, the operators ORv and OLv are even functions of the scattering angle and
can contribute to σtt̄.

In addition, the operators ORv and OLv will obviously produce the same amount of top
pairs but with opposite chirality. Consequently, the spin-independent observables associated
to the tt̄ production are expected to depend only on the sum ORv + OLv while the difference
ORv − OLv will only contribute to spin-dependent observables. Similarly, but with a sign
flip, only their difference, ORa −OLa, can contribute to spin-independent observables and in
particular to the tt̄ differential cross section after summing over the spins. The orthogonal
combination ORa + OLa could contribute to spin-dependent observables which are odd func-
tions of the scattering angle, but we shall not consider any observable of this type in our
analysis.

Therefore, we expect a dependence of the total pair production cross section on the sum

cV v = cRv + cLv with

{

cRv = ctq/2 + (ctu + ctd)/4

cLv = c(8,1)
Qq /2 + (cQu + cQd)/4

(13)

2The matrices Cγµγ5 are antisymmetric but the matrices Cγµ are symmetric, C being the charge conju-
gation matrix.
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with a sign flip, only their difference, ORa − OLa, can contribute to spin-independent ob-

servables and in particular to the tt̄ differential cross section after summing over the spins.

The orthogonal combination ORa + OLa could contribute to spin-dependent observables

which are odd functions of the scattering angle, but we shall not consider any observable

of this type in our analysis.

Therefore, we expect a dependence of the total pair production cross section on the sum

cV v = cRv + cLv with

{

cRv = ctq/2 + (ctu + ctd)/4

cLv = c(8,1)
Qq /2 + (cQu + cQd)/4

(2.13)

and the forward-backward asymmetry will depend on the combination

cAa = cRa − cLa with

{

cRa = −ctq/2 + (ctu + ctd)/4

cLa = −c(8,1)
Qq /2 + (cQu + cQd)/4.

(2.14)

The difference

cAv = cRv − cLv (2.15)

can only contribute to spin-dependent observables (see section 3.5).

The isospin-1 sector is spanned by the three combinations:

ORr = O
(8)
tu − O

(8)
td , OLr = O

(8)
Qu − O

(8)
Qd and O

(8,3)
Qq . (2.16)

Again, parity arguments lead to the conclusion that the total cross section can only depend

on the combination

c′V v = (ctu − ctd)/2 + (cQu − cQd)/2 + c(8,3)
Qq , (2.17)

while the forward-backward asymmetry will only receive a contribution proportional to

c′Aa = (ctu − ctd)/2 − (cQu − cQd)/2 + c(8,3)
Qq . (2.18)

and spin-dependent observables will depend on (see appendix C)

c′Av = (ctu − ctd)/2 − (cQu − cQd)/2 − c(8,3)
Qq . (2.19)

Numerically, we shall see in section 3.2 that the isospin-0 sector gives a larger contri-

bution to the observables we are considering than the isospin-1 sector. This is due to the

fact that a sizeable contribution to these observables is coming from a phase-space region

near threshold where the up- and down-quark contributions are of the same order.

It is interesting to note that, in composite models, where the strong sector is usually

invariant under the weak-custodial symmetry SO(4) → SO(3) [41], the right-handed up

and down quarks certainly transform as a doublet of the SU(2)R symmetry, and therefore

cQu = cQd. There are however various ways to embed the right-handed top quarks into

a SO(4) representation [32]: if it is a singlet, then ctu = ctd also and the isospin-1 sector

reduces to the operator O
(8,3)
Qq only.
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and down quarks certainly transform as a doublet of the SU(2)R symmetry, and therefore
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a SO(4) representation [32]: if it is a singlet, then ctu = ctd also and the isospin-1 sector
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Qq only.
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LHC 7 TeV

  total cross section

 Tevatron

— at the Tevatron (
√

s = 1.96 TeV):

σ (gg → tt̄) /pb = 0.35+0.20
−0.12 +

(

0.10+0.05
−0.03

)

chg

(

1 TeV

Λ

)2

, (39)

σ (qq̄ → tt̄) /pb = 5.80+2.21
−1.49 +

[(

0.87+0.23
−0.16

)

cV v +
(

1.34+0.42
−0.30

)

chg +
(

0.31+0.08
−0.06

)

c′V v

]

(

1 TeV

Λ

)2

,

(40)

σ (pp → tt̄) /pb = 6.15+2.41
−1.61 +

[(

0.87+0.23
−0.16

)

cV v +
(

1.44+0.47
−0.33

)

chg +
(

0.31+0.08
−0.06

)

c′V v

]

(

1 TeV

Λ

)2

.

(41)

Numerically, the contribution from the isospin-1 sector (c′V v) is suppressed compared to the
contribution of the isospin-0 sector (cV v) and this suppression is more effective at the LHC
than at the Tevatron. This is due to the fact that, at Tevatron, the top pair production by
up-quark annihilation is 5 ÷ 6 times bigger than by down-quark annihilation. At the LHC,
this ratio is reduced to 1.4 only. In most of the rest of our analysis, we shall neglect the
contribution from the isospin-1 sector since it is subdominant.

The measurements of the total cross section at the Tevatron and at the LHC are com-
plementary as shown in Fig. 4. As expected, the LHC pp → tt̄ total cross section strongly
depends on chg. Consequently, it can be used to constrain directly the allowed range for chg.
On the contrary, the corresponding Tevatron cross-section depends on both chg and cV v and
constrains thus a combination of these parameters.

In Fig. 4, we assume that the central measured value of the cross section at the LHC
coincides with the SM theoretical prediction. Figure 5 shows how the allowed region is
shifted to the left (right) if the measured value is lower (higher) than the computed value.
We use the NLO+NLL prediction [54] for the SM cross section (mt = 174.3 GeV) at the
LHC

σ14 TeV
th = 832+75

−78(scale)+28
−27(pdf) pb,

σ7 TeV
th = 146+12

−13(scale)+11
−11(pdf) pb, (42)

and at the Tevatron
σ1.96 TeV

th = 6.87+0.26
−0.48(scale)+0.47

−0.33(pdf) pb. (43)

In Fig. 4, we combine the errors linearly. For the experimental value, we use the CDF
combination of all channel at 4.6 fb−1 [55],

σ1.96 TeV
obs = 7.5 ± 0.31(stat) ± 0.34(syst) ± 0.15(lumi) pb (44)

and combine the errors quadratically. Due to the rather large uncertainties on the theoretical
normalization, the region allowed by the total cross section measurement remains large.
Even if the experimental precision becomes very good, a rather large allowed region will
remain due to the theoretical uncertainties. An improvement of the theoretical prediction
for top pair production in SM is necessary to reduce the allowed region. The theoretical
uncertainties for the new physics part are estimated by changing the factorisation scale µF

and the renormalisation scale µR. The errors from the pdf are not computed. The errors on

12

u+d
(isospin 0)

chromo 
magnetic
moment

u-d
(isospin 1)

J
H
E
P
0
3
(
2
0
1
1
)
1
2
5

operator Ohg. Our results for tt̄ production are obtained by the convolution of the analytic

differential cross section of eqs. (3.2) and (3.3) with the pdf (taking CTEQ6L1 [52]). We

have also implemented the new vertices in MadGraph [53] and used them to validate our

results. At leading order, we have

• at the LHC (
√

s = 14 TeV):

σ (gg→ tt̄) /pb=466+146
−103+

(

127+31
−23

)

chg

(

1 TeV

Λ

)2

, (3.10)

σ (qq̄→ tt̄) /pb=72+16
−12+

[(

15+2
−1

)

cV v+
(

17+3
−2

)

chg+
(

1.32+0.12
−0.12

)

c′V v

]

(

1 TeV

Λ

)2

, (3.11)

σ (pp→ tt̄) /pb=538+162
−115+

[(

15+2
−1

)

cV v+
(

144+34
−25

)

chg+
(

1.32+0.12
−0.12

)

c′V v

]

(

1 TeV

Λ

)2

. (3.12)

• at the LHC (
√

s = 7 TeV):

σ (pp→ tt̄) /pb=94+22
−17+

[(

4.5+0.7
−0.6

)

cV v+
(

25+7
−5

)

chg+
(

0.48+0.068
−0.056

)

c′V v

]

(

1 TeV

Λ

)2

. (3.13)

• at the Tevatron (
√

s = 1.96 TeV):

σ (gg→ tt̄) /pb=0.35+0.20
−0.12+

(

0.10+0.05
−0.03

)

chg

(

1 TeV

Λ

)2

, (3.14)

σ (qq̄→ tt̄) /pb=5.80+2.21
−1.49+

[(

0.87+0.23
−0.16

)

cV v+
(

1.34+0.42
−0.30

)

chg+
(

0.31+0.08
−0.06

)

c′V v

]

(

1 TeV

Λ

)2

,

(3.15)

σ (pp→ tt̄) /pb=6.15+2.41
−1.61+

[(

0.87+0.23
−0.16

)

cV v+
(

1.44+0.47
−0.33

)

chg+
(

0.31+0.08
−0.06

)

c′V v

]

(

1 TeV

Λ

)2

.

(3.16)

Numerically, the contribution from the isospin-1 sector (c′V v) is suppressed compared to the

contribution of the isospin-0 sector (cV v) and this suppression is more effective at the LHC

than at the Tevatron. This is due to the fact that, at Tevatron, the top pair production by

up-quark annihilation is 5÷ 6 times bigger than by down-quark annihilation. At the LHC,

this ratio is reduced to 1.4 only. In most of the rest of our analysis, we shall neglect the

contribution from the isospin-1 sector since it is subdominant.

The measurements of the total cross section at the Tevatron and at the LHC are

complementary as shown in figure 4. As expected, the LHC pp → tt̄ total cross section

strongly depends on chg. Consequently, it can be used to constrain directly the allowed

range for chg. On the contrary, the corresponding Tevatron cross-section depends on both

chg and cV v and constrains thus a combination of these parameters.

In figure 4, we assume that the central measured value of the cross section at the LHC

coincides with the SM theoretical prediction. Figure 5 shows how the allowed region is
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Ref. [24] Ref. [19] Ref. [51] Ref. [20] Ref. [21]

chg 2CtG g1gs
1
2C33

uGφ

cV v
1
4

(

C1
u + C2

u + C1
d + C2

d

)

−g2g2
s(*)

g2
s

4 (κu
R + κd

R + κu
L + κd

L)(*) g2
s

2 (C1 + C2)

cAa
1
4

(

C1
u − C2

u + C1
d − C2

d

) g2
s

4 (κu
R + κd

R + κu
L + κd

L)(*) g2
s

2 (C1 − C2)

c′V v
1
2

(

C1
u + C2

u − C1
d − C2

d

) g2
s

2 (κu
R − κd

R + κu
L − κd

L)(*)

c′Aa
1
2

(

C1
u − C2

u − C1
d + C2

d

) g2
s

2 (κu
R − κd

R + κu
L − κd

L)(*)

Table 1: Dictionary between our parameters and those used in recent papers on the subject. They

all agree eventually up to a sign for those that are labeled by a (*). For Ref. [24], C(8,3)
qq = c(8,3)

Qq .
Blank entries mean that the corresponding operators were not considered.

• the second one is responsible for the odd part in the scattering angle proportional to
cAa ±

c′
Aa

2

t̄γµγ5T
Atq̄γµγ5T

Aq. (34)

3.2 Total cross section

3.2.1 LHC–Tevatron complementarity

Since the dependence on cAa and c′Aa vanishes after the integration over the kinematical
variable t, the total cross section depends thus only on the three parameters chg cV v and
c′V v. Moreover, the tt̄ production by gluon fusion only depends on the coefficient of the
operator Ohg. Our results for tt̄ production are obtained by the convolution of the analytic
differential cross section of Eqs. (27) and (28) with the pdf (taking CTEQ6L1 [52]). We have
also implemented the new vertices in MadGraph [53] and used them to validate our results.
At leading order, we have

— at the LHC (
√

s = 14 TeV):

σ (gg → tt̄) /pb = 466+146
−103 +

(

127+31
−23

)

chg

(

1 TeV

Λ

)2

, (35)

σ (qq̄ → tt̄) /pb = 72+16
−12 +

[(

15+2
−1

)

cV v +
(

17+3
−2

)

chg +
(

1.32+0.12
−0.12

)

c′V v

]

(

1 TeV

Λ

)2

, (36)

σ (pp → tt̄) /pb = 538+162
−115 +

[(

15+2
−1

)

cV v +
(

144+34
−25

)

chg +
(

1.32+0.12
−0.12

)

c′V v

]

(

1 TeV

Λ

)2

. (37)

— at the LHC (
√

s = 7 TeV):

σ (pp → tt̄) /pb = 94+22
−17 +

[(

4.5+0.7
−0.6

)

cV v +
(

25+7
−5

)

chg +
(

0.48+0.068
−0.056

)

c′V v

]

(

1 TeV

Λ

)2

. (38)
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In fits, we’ll use NLO+NLL SM 
results but in interference, 
we’ll keep LO SM amplitude
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Region allowed by the Tevatron at 2 σ
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would only affect the standard gluon vertices like for instance the interactions generated by
the operator OG = fABCGA

µνG
B νρGC

ρ
µ (see Refs. [24, 35–37] for a study of its effects on top

pair production). Hence we consider the set of operators which affect the tt̄ production at
tree-level by interference with the SM amplitudes. Both at the Tevatron and at the LHC,
the dominant SM amplitudes are those involving QCD in quark-antiquark annihilation or
gluon fusion. Therefore we shall neglect all new interactions that could interfere only with
SM weak processes like qq̄ → Z(γ) → tt̄. Our analysis aims at identifying the effects of the
new physics on top pair production, so it ignores the operators which affect the decay of
the top [24, 28, 38]. We are then left with only two classes of dimension-six gauge-invariant
operators [33]:

• operators with a top and an antitop and one or two gluons, namely

Ogt =
[

t̄γµTADνt
]

GA
µν ,

OgQ =
[

Q̄γµTADνQ
]

GA
µν ,

Ohg =
[(

HQ̄
)

σµνTAt
]

GA
µν , (1)

where Q = (tL, bL) denotes the left-handed weak doublet of the third quark generation,
t is the right-handed top quark, TA are the generators of SU(3) in the fundamental
representations normalized to tr(TATB) = δAB/2.

• four-fermion operators with a top and an antitop together with a pair of light quark
and antiquark that can be organized following their chiral structures:

L̄LL̄L:

O
(8,1)
Qq =

(

Q̄γµTAQ
)(

q̄γµT
Aq

)

,

O
(8,3)
Qq =

(

Q̄γµTAσIQ
)(

q̄γµT
AσIq

)

, (2)

R̄RR̄R:

O
(8)
tu =

(

t̄γµTAt
)(

ūγµT
Au

)

,

O
(8)
td =

(

t̄γµTAt
)(

d̄γµTAd
)

, (3)

L̄LR̄R:

O
(8)
Qu =

(

Q̄γµTAQ
)(

ūγµTAu
)

,

O
(8)
Qd =

(

Q̄γµTAQ
)(

d̄γµT
Ad

)

,

O
(8)
tq =

(

q̄γµTAq
)(

t̄γµT
At

)

, (4)

L̄RL̄R:

O
(8)
d =

(

Q̄TAt
)(

q̄T Ad
)

, (5)

where σI are the Pauli matrices (normalized to tr(σIσJ) = 2δIJ), q and u and d are
respectively the left- and right-handed components of the first two generations.

3

(chromomagnetic 
moment operator)

(4-fermion 
operator)

 The pp -> tt total cross section at Tevatron depends on both chg and cVv  
and constrains thus a combination of these parameters.

--
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 Tevatron constraints

 The pp -> tt total cross section at Tevatron depends on both chg and cVv  
and constrains thus a combination of these parameters.

-
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µνG
B νρGC
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µ (see Refs. [24, 35–37] for a study of its effects on top

pair production). Hence we consider the set of operators which affect the tt̄ production at
tree-level by interference with the SM amplitudes. Both at the Tevatron and at the LHC,
the dominant SM amplitudes are those involving QCD in quark-antiquark annihilation or
gluon fusion. Therefore we shall neglect all new interactions that could interfere only with
SM weak processes like qq̄ → Z(γ) → tt̄. Our analysis aims at identifying the effects of the
new physics on top pair production, so it ignores the operators which affect the decay of
the top [24, 28, 38]. We are then left with only two classes of dimension-six gauge-invariant
operators [33]:

• operators with a top and an antitop and one or two gluons, namely

Ogt =
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where Q = (tL, bL) denotes the left-handed weak doublet of the third quark generation,
t is the right-handed top quark, TA are the generators of SU(3) in the fundamental
representations normalized to tr(TATB) = δAB/2.

• four-fermion operators with a top and an antitop together with a pair of light quark
and antiquark that can be organized following their chiral structures:
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would only affect the standard gluon vertices like for instance the interactions generated by
the operator OG = fABCGA

µνG
B νρGC

ρ
µ (see Refs. [24, 35–37] for a study of its effects on top

pair production). Hence we consider the set of operators which affect the tt̄ production at
tree-level by interference with the SM amplitudes. Both at the Tevatron and at the LHC,
the dominant SM amplitudes are those involving QCD in quark-antiquark annihilation or
gluon fusion. Therefore we shall neglect all new interactions that could interfere only with
SM weak processes like qq̄ → Z(γ) → tt̄. Our analysis aims at identifying the effects of the
new physics on top pair production, so it ignores the operators which affect the decay of
the top [24, 28, 38]. We are then left with only two classes of dimension-six gauge-invariant
operators [33]:

• operators with a top and an antitop and one or two gluons, namely

Ogt =
[

t̄γµTADνt
]

GA
µν ,

OgQ =
[

Q̄γµTADνQ
]

GA
µν ,

Ohg =
[(

HQ̄
)

σµνTAt
]

GA
µν , (1)

where Q = (tL, bL) denotes the left-handed weak doublet of the third quark generation,
t is the right-handed top quark, TA are the generators of SU(3) in the fundamental
representations normalized to tr(TATB) = δAB/2.

• four-fermion operators with a top and an antitop together with a pair of light quark
and antiquark that can be organized following their chiral structures:

L̄LL̄L:

O
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Qq =

(

Q̄γµTAQ
)(
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)

,
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)(
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)
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)(
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)(
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where σI are the Pauli matrices (normalized to tr(σIσJ) = 2δIJ), q and u and d are
respectively the left- and right-handed components of the first two generations.
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 ● At the LHC, the pp -> tt total cross section mostly depends on  chg  and 

can be directly used to constrain the allowed range for chg

 ●The Tevatron cross section depends on both chg and cVv  and 

constrains thus a combination of these parameters.
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tt cross section very much SM-like-
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Constraining Non-resonant New Physics in top pair production

A 10% uncertainty on the total cross section at the LHC already rules out 
a  large region of parameter space

would only affect the standard gluon vertices like for instance the interactions generated by
the operator OG = fABCGA

µνG
B νρGC

ρ
µ (see Refs. [24, 35–37] for a study of its effects on top

pair production). Hence we consider the set of operators which affect the tt̄ production at
tree-level by interference with the SM amplitudes. Both at the Tevatron and at the LHC,
the dominant SM amplitudes are those involving QCD in quark-antiquark annihilation or
gluon fusion. Therefore we shall neglect all new interactions that could interfere only with
SM weak processes like qq̄ → Z(γ) → tt̄. Our analysis aims at identifying the effects of the
new physics on top pair production, so it ignores the operators which affect the decay of
the top [24, 28, 38]. We are then left with only two classes of dimension-six gauge-invariant
operators [33]:

• operators with a top and an antitop and one or two gluons, namely

Ogt =
[

t̄γµTADνt
]

GA
µν ,

OgQ =
[

Q̄γµTADνQ
]

GA
µν ,

Ohg =
[(

HQ̄
)

σµνTAt
]

GA
µν , (1)

where Q = (tL, bL) denotes the left-handed weak doublet of the third quark generation,
t is the right-handed top quark, TA are the generators of SU(3) in the fundamental
representations normalized to tr(TATB) = δAB/2.

• four-fermion operators with a top and an antitop together with a pair of light quark
and antiquark that can be organized following their chiral structures:

L̄LL̄L:

O
(8,1)
Qq =

(

Q̄γµTAQ
)(

q̄γµT
Aq

)

,

O
(8,3)
Qq =

(

Q̄γµTAσIQ
)(

q̄γµT
AσIq

)

, (2)

R̄RR̄R:

O
(8)
tu =

(

t̄γµTAt
)(

ūγµT
Au

)

,

O
(8)
td =

(

t̄γµTAt
)(

d̄γµTAd
)

, (3)

L̄LR̄R:

O
(8)
Qu =

(

Q̄γµTAQ
)(

ūγµTAu
)

,

O
(8)
Qd =

(

Q̄γµTAQ
)(

d̄γµT
Ad

)

,

O
(8)
tq =

(

q̄γµTAq
)(

t̄γµT
At

)

, (4)

L̄RL̄R:

O
(8)
d =

(

Q̄TAt
)(

q̄T Ad
)

, (5)

where σI are the Pauli matrices (normalized to tr(σIσJ) = 2δIJ), q and u and d are
respectively the left- and right-handed components of the first two generations.

3

(chromomagnetic 
moment operator)

(4-fermion 
operator)
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Figure 7: On the left: normalized differential cross sections of the SM, 1
σSM

dσSM

dX , and of the

interferences of the SM with Ohg and with ORv and OLv,
1

σNP

dσNP

dX , as a function of mtt̄, pT and

η for the LHC at 14TeV. On the right: normalized cross section of the SM, 1
σSM

dσSM

dX , and of the

SM and the interference with the new physics, 1
σSM+σNP

dσSM+σNP

dX (for chg = 1, cV v = −2 and
Λ = 1 TeV).

i.e., top quarks prefer to go in the direction of the incoming quark and the anti-top quarks
in the direction of the incoming antiquark [57]:

ASM
FB = 0.05 ± 0.015. (50)

The recent measurement of AFB at the Tevatron shows an intriguing deviation from the
Standard Model prediction [58–60]. The most recent CDF result (5.3 fb−1) [61]

AEXP
FB = 0.15 ± 0.05(stat) ± 0.024(syst), (51)
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Figure 7: On the left: normalized differential cross sections of the SM, 1
σSM

dσSM

dX , and of the

interferences of the SM with Ohg and with ORv and OLv,
1

σNP

dσNP

dX , as a function of mtt̄, pT and

η for the LHC at 14TeV. On the right: normalized cross section of the SM, 1
σSM

dσSM

dX , and of the

SM and the interference with the new physics, 1
σSM+σNP

dσSM+σNP

dX (for chg = 1, cV v = −2 and
Λ = 1 TeV).

i.e., top quarks prefer to go in the direction of the incoming quark and the anti-top quarks
in the direction of the incoming antiquark [57]:

ASM
FB = 0.05 ± 0.015. (50)

The recent measurement of AFB at the Tevatron shows an intriguing deviation from the
Standard Model prediction [58–60]. The most recent CDF result (5.3 fb−1) [61]

AEXP
FB = 0.15 ± 0.05(stat) ± 0.024(syst), (51)
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Minor effect on shapes of distributions at the LHC
interference only total
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region, the effect of the new physics should remain more or less of the same order excepted
of course if there is some huge cancellation. Moreover, the cross-section is expected to be
harder and harder as operators of higher dimensions are included in the effective Lagrangian.
Ultimately some resonance threshold will be reached, leading to a radically different cross-
section than the one predicted by the Standard Model.

It was found recently in Ref. [25] that for the four-fermion operators, there are O(1/Λ4)
corrections from non-interfering contributions that can be almost as large as the O(1/Λ2)
interfering contributions at the LHC if Λ ∼ 1 TeV. However, at the LHC, these four-fermion
operators give small contributions compared to the chromomagnetic operator. So we can
conclude that including non-interfering four-fermion operators will not change much our
numerical analysis.

Finally, to have an idea on how heavy the particles associated with new physics should be
to allow an effective field theory treatment at the LHC, we compare in Fig. 6 the correction
to the SM cross-section at the LHC due to a W ′ (whose coupling to d and t quarks is 1)
and the correction due to the corresponding effective operators (CV v = −1/2, C ′

V v = −1,
Λ = MW ′). This plot shows that for MW ′ ! 1.5 TeV the effective operators are a very good
approximation (up to a few percents) at the LHC, although this depends on the coupling.
We will show in Fig. 9 that a similar conclusion is reached at the Tevatron. Consequently,
the resonance models cannot be constrained in our effective approach since the exclusion
regions in Fig. 5 correspond, for example, to a relatively light resonance (M " TeV) with a
coupling of order 1.
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Figure 6: Correction to the SM cross-section at the LHC due to a W ′ and comparison with the
effective field theory approach.

3.3 tt̄ invariant-mass, pT and η distributions

It was shown in Ref. [19] that the operators Ohg and ORv can modify the invariant mass
distribution at the Tevatron without drastically affecting the total cross section, although
no constraint was derived explicitly. We use in this section the latest CDF data [31] to
further constrain new physics. See also Ref. [51] for a similar study on the L̄LL̄L and
R̄RR̄R operators with the first data [56]. Since we have already used the measured total
cross section to constrain the parameter space here we only employ the shape information.
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Domain of validity of results

At the Tevatron, our results apply to a region of parameter space bounded by 

2) For which typical mass scale 
does the  effective field theory 

treatment apply? 

->   ~ 1.5 TeV

1) when O(1/Λ4) terms are subdominant
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At the LHC, since the center of mass energy is larger, the reliable region 
shrinks to                                             and  

correction to SM cross section at the LHC due to 
a W’ and comparison with EFT computation
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axigluon mass) obviously leads to a negative asymmetry. To generate a positive asymmetry
that could explain the Tevatron result, a flavour non-universal axigluon is needed. More
precisely, the coupling of the axigluon to the third generation and to the light quarks should
be of opposite sign [65, 71, 73]: cAa/Λ2 = −2gq

Agt
A/m2

A is then positive and can potentially
explain the Tevatron data for a mass of the axigluon around 1.5 TeV provided that its
couplings are of the same order as the QCD coupling.3 We also note that models where a
flavour-violating Z ′ is exchanged in the t-channel in qq̄ → tt̄ , have a chance to give a positive
asymmetry only if the Z ′ is relatively light [63]. Indeed, in the heavy regime (mZ′ # mt), the
contribution of the Z ′ to the top pair production is fully captured in terms of our effective
Lagrangian with in particular cAa/Λ2 = −(gL

q
2

+ gR
q

2
)/m2

Z′, where gi
q denotes the coupling

of Z ′ to the flavour-off diagonal current t̄iγµqi. Therefore it leads to a negative asymmetry.
In Fig. 9, we plot the prediction for AFB from an axigluon with coupling gs to all fermions

and the prediction obtained with the corresponding effective operator (CAa = −2g2
s , C ′

Aa = 0,
Λ = MA). This shows that our effective field theory approach is a good approximation at
the Tevatron for masses MA ! 1.5 TeV, comparably to the LHC (see Fig. 6).
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Figure 9: AFB prediction at the Tevatron due to an axigluon and comparison with the effective
field theory approach.

Finally, as an illustration of the simplicity of such an approach, we consider the forward-
backward asymmetry at LHC. In this case the symmetry of the pp collision and the domi-
nance of the gg channel for tt̄ make it particularly challenging. A possibility is to build the
so-called central rapidity asymmetry

AC(yC) ≡
σt (|y| < yC) − σt̄ (|y| < yC)

σt (|y| < yC) + σt̄ (|y| < yC)
(lab frame) , (54)

where yC is the rapidity cut defining the “centrality” of an event. The value yC = 1 has been
shown to be close to optimal in Ref. [57]. A straightforward calculation using cAa

(

1 TeV
Λ

)2
= 2

as a central extraction from the Tevatron data gives rise to very small asymmetries, AC " 1%,
at the LHC both at 14 TeV and 7 TeV. While the effects of new physics could be enhanced
by requiring, for instance, a minimal invariant tt̄ mass, it is also clear that measurements of
forward-backward asymmetries will be very challenging at the LHC.

3It has been noted [71] recently that concrete realizations of this axigluon idea [65] are endangered by
data on neutral Bd-meson mixing.
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Effective Field Theory Approach to the 
Forward-Backward asymmetry

For the sake of simplicity, in our analysis we assume that the measured values mi are
normally distributed around the corresponding theoretical predictions ti with a standard
deviation σi given by their errors. Errors coming from different sources have been combined
quadratically. We multiply by a common free coefficient ζ the theoretical prediction to get
rid of the normalisation constraint. In practice, we use the best value for ζ . The quantity

n
∑

i=1

(mi − ζti)
2

σ2
i

(48)

is then distributed as a χ2 with n − 1 degrees of freedom. The theoretical predictions are
obtained by integrating Eqs. (27) and (28) over the scattering angle. The explicit formulas
are given in App. C. The SM distribution is computed at the tree level and normalised
to the NLO+NLL result. The errors on the contribution of the operators are estimated by
changing the factorisation and renormalisation scales. We take into account the bins between
350 GeV and 600 GeV (n = 13). We cannot use the full distribution since our calculation
only makes sense if |gNP | s

Λ2 " 1. So mtt̄ ! 1 TeV if Λ ∼ 1 TeV. The bound mtt̄ < 600 GeV
seems reasonable since, even in the region |gNP |(1 TeV

Λ )2 ∼ 4, the estimation of the 1/Λ4

corrections from |MNP |2 are a bit less than 50% of the 1/Λ2 corrections. For the next bins,
these next order corrections become too large.

In Fig. 4, we show the region consistent at 95% C.L. with the tt̄ invariant mass constraints
reported in Ref. [31]. As expected, the invariant mass shape is sensitive to a very different
combination of the parameters than the total cross section. Indeed, the interferences with
the operators ORv and OLv grow faster than the SM by a factor s, which is not the case for
Ohg. The shape depends thus strongly on cV v. The Tevatron measurement already excludes

the region cV v

(

1 TeV
Λ

)2
" +2.

The good constraints obtained with the invariant mass at the Tevatron suggest to look
for similar effects at the LHC. However, at the LHC, the top pair is mainly produced by
gluon fusion and the contributions of ORv and OLv are much smaller than the SM contribu-
tion. Moreover, the effect of these operators becomes important at high energy where our
expansion breaks down. Only Ohg has an important contribution. However, this contribu-
tion has a similar shape as that of the SM for reasons already mentioned in Section 3.1 and
confirmed by Fig. 7. The effects of the new operators will be much harder to be seen in the
mtt̄ distribution but also in the pT and η at the LHC, as shown in Fig. 7.

3.4 Forward-backward asymmetry

In this section we analyse the forward-backward asymmetry in our framework (for an analo-
gous study with older data see Ref. [20]). The forward-backward asymmetry in tt̄ production
is defined as

AFB ≡
σ (cos θt > 0) − σ (cos θt < 0)

σ (cos θt > 0) + σ (cos θt < 0)
(49)

where θt is the angle between the momenta of the incoming parton and the outgoing top
quark in the laboratory frame. In the Standard Model, there are no preferred directions for
the top and anti-top quarks at the lowest order. A positive asymmetry is generated at NLO,
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Figure 7: On the left: normalized differential cross sections of the SM, 1
σSM

dσSM

dX , and of the

interferences of the SM with Ohg and with ORv and OLv,
1

σNP

dσNP

dX , as a function of mtt̄, pT and

η for the LHC at 14TeV. On the right: normalized cross section of the SM, 1
σSM

dσSM

dX , and of the

SM and the interference with the new physics, 1
σSM+σNP

dσSM+σNP

dX (for chg = 1, cV v = −2 and
Λ = 1 TeV).

i.e., top quarks prefer to go in the direction of the incoming quark and the anti-top quarks
in the direction of the incoming antiquark [57]:

ASM
FB = 0.05 ± 0.015. (50)

The recent measurement of AFB at the Tevatron shows an intriguing deviation from the
Standard Model prediction [58–60]. The most recent CDF result (5.3 fb−1) [61]

AEXP
FB = 0.15 ± 0.05(stat) ± 0.024(syst), (51)
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Figure 7: On the left: normalized differential cross sections of the SM, 1
σSM

dσSM

dX , and of the

interferences of the SM with Ohg and with ORv and OLv,
1

σNP

dσNP

dX , as a function of mtt̄, pT and

η for the LHC at 14TeV. On the right: normalized cross section of the SM, 1
σSM

dσSM

dX , and of the

SM and the interference with the new physics, 1
σSM+σNP

dσSM+σNP

dX (for chg = 1, cV v = −2 and
Λ = 1 TeV).

i.e., top quarks prefer to go in the direction of the incoming quark and the anti-top quarks
in the direction of the incoming antiquark [57]:

ASM
FB = 0.05 ± 0.015. (50)

The recent measurement of AFB at the Tevatron shows an intriguing deviation from the
Standard Model prediction [58–60]. The most recent CDF result (5.3 fb−1) [61]

AEXP
FB = 0.15 ± 0.05(stat) ± 0.024(syst), (51)
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C Aa  and C ’Aa are only constrained by the asymmetry and not 
by the total cross section or the invariant mass distribution

Link to axigluon models:

axigluon mass) obviously leads to a negative asymmetry. To generate a positive asymmetry
that could explain the Tevatron result, a flavour non-universal axigluon is needed. More
precisely, the coupling of the axigluon to the third generation and to the light quarks should
be of opposite sign [65, 71, 73]: cAa/Λ2 = −2gq

Agt
A/m2

A is then positive and can potentially
explain the Tevatron data for a mass of the axigluon around 1.5 TeV provided that its
couplings are of the same order as the QCD coupling.3 We also note that models where a
flavour-violating Z ′ is exchanged in the t-channel in qq̄ → tt̄ , have a chance to give a positive
asymmetry only if the Z ′ is relatively light [63]. Indeed, in the heavy regime (mZ′ # mt), the
contribution of the Z ′ to the top pair production is fully captured in terms of our effective
Lagrangian with in particular cAa/Λ2 = −(gL

q
2

+ gR
q

2
)/m2

Z′, where gi
q denotes the coupling

of Z ′ to the flavour-off diagonal current t̄iγµqi. Therefore it leads to a negative asymmetry.
In Fig. 9, we plot the prediction for AFB from an axigluon with coupling gs to all fermions

and the prediction obtained with the corresponding effective operator (CAa = −2g2
s , C ′

Aa = 0,
Λ = MA). This shows that our effective field theory approach is a good approximation at
the Tevatron for masses MA ! 1.5 TeV, comparably to the LHC (see Fig. 6).
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Figure 9: AFB prediction at the Tevatron due to an axigluon and comparison with the effective
field theory approach.

Finally, as an illustration of the simplicity of such an approach, we consider the forward-
backward asymmetry at LHC. In this case the symmetry of the pp collision and the domi-
nance of the gg channel for tt̄ make it particularly challenging. A possibility is to build the
so-called central rapidity asymmetry

AC(yC) ≡
σt (|y| < yC) − σt̄ (|y| < yC)

σt (|y| < yC) + σt̄ (|y| < yC)
(lab frame) , (54)

where yC is the rapidity cut defining the “centrality” of an event. The value yC = 1 has been
shown to be close to optimal in Ref. [57]. A straightforward calculation using cAa

(

1 TeV
Λ

)2
= 2

as a central extraction from the Tevatron data gives rise to very small asymmetries, AC " 1%,
at the LHC both at 14 TeV and 7 TeV. While the effects of new physics could be enhanced
by requiring, for instance, a minimal invariant tt̄ mass, it is also clear that measurements of
forward-backward asymmetries will be very challenging at the LHC.

3It has been noted [71] recently that concrete realizations of this axigluon idea [65] are endangered by
data on neutral Bd-meson mixing.
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Charge asymmetry ⇔ FB asymmetry

ok.  But where does it come from?

-> top quarks are preferentially emitted in the direction of the incoming quark

where MNP represents the matrix element of all the (new physics) dimension-six operators
introduced in Section 2.

From the Lagrangian in Eq. (20), the two parton-level cross sections for tt̄ production
at O (Λ−2) follow from the Feynman diagrams depicted in Fig. 14 and 15 of App. B. Their
expressions are (v = 246 GeV):

dσ

dt
(qq̄ → tt̄) =

dσSM

dt

(

1 +
cV v ±

c′
V v

2

g2
s

s

Λ2

)

+
1

Λ2

αs

9s2

((

cAa ±
c′Aa

2

)

s(τ2 − τ1) + 4gschg

√
2vmt

)

(27)

dσ

dt
(gg → tt̄) =

dσSM

dt
+
√

2αsgs
vmt

s2

chg

Λ2

(

1

6τ1τ2
−

3

8

)

(28)

where the upper (lower) sign is for the up (down) quarks and

dσSM

dt
(qq̄ → tt̄) =

4πα2
s

9s2

(

τ 2
1 + τ 2

2 +
ρ

2

)

(29)

dσSM

dt
(gg → tt̄) =

πα2
s

s2

(

1

6τ1τ2
−

3

8

)

(ρ + τ 2
1 + τ 2

2 −
ρ2

4τ1τ2
) (30)

with τ1 =
m2

t − t

s
, τ2 =

m2
t − u

s
, ρ =

4m2
t

s
. (31)

The Mandelstam parameter t is related, in the tt̄ center-of-mass frame, to the angle θ between

the momenta of the incoming parton and the outgoing top quark by (β =
√

1 − 4m2

s )

m2
t − t =

s

2
(1 − β cos θ) . (32)

All the contributions to the tt̄ differential cross section but the one proportional to cAa ±
c′
Aa

2
are invariant under θ → π − θ.

Similar results have already been derived in the literature. For instance, these cross sec-
tions were recently fully computed in Ref. [24] and consistent with our expressions with the
identifications given in Table 1. This non exhaustive table also gives the correspondences
with respect to some other recent works [19–21, 51]. Note that the contribution of the
chromomagnetic operator Ohg has been extensively discussed in the literature [14–17] and
recently revisited for both processes in Ref. [21, 22].

As can be seen from Eqs. (30) and (28), the new physics and the SM contributions for
gluon fusion have a common factor. In fact, this common factor is what is mainly responsible
for the shape of the distributions of the SM. This is the reason why, as we will stress again
in the following, the operator Ohg can hardly be distinguished from the SM in gluon fusion.

Equation (27) shows that only two kinds of four-fermion operators actually contribute
to the differential cross-section after averaging over the final state spins:

• the first one is responsible for the even part in the scattering angle proportional to

cV v ±
c′
V v

2

t̄γµTAtq̄γµTAq (33)

where here t and q = u, d stand for the full 4-component Dirac spinor;

10
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AFB prediction at the Tevatron due to an axigluon 
and comparison with the EFT computation

is larger by about 2σ than the SM prediction. While a thorough investigation within the
Standard Model and in particular of the impact of the unknown higher order QCD correc-
tions would be certainly welcome, it is tempting to explain this discrepancy as the effect of
new physics in various models [20, 51, 62–72]. An attractive, simple and model-independent
alternative is to consider the low energy effective field theory of Section 2. A first obvious
observation is that no asymmetry can arise in gluon fusion in which the initial state is sym-
metric. From Eq. (27), we see that the asymmetry can only depend on cAa and c′Aa. Since
their contribution is a purely odd function of the scattering angle θ defined in Eq. (32), these
coefficients are only constrained by the asymmetry and not by the total cross section nor
the invariant mass distribution. After integration with the pdf, we find in the lab frame

σ (cos θt > 0) − σ (cos θt < 0) =
(

0.235+0.067
−0.042 cAa + 0.088+0.024

−0.016 c′Aa

)

×
(

1 TeV

Λ

)2

pb (52)

where again the errors are estimated by varying the factorisation and renormalisation scales.
Assuming that the total cross section is given by Eq. (43), the correction to the SM asym-
metry can be expressed as

δAdim6
FB =

(

0.0342+0.016
−0.009 cAa + 0.0128+0.0064

−0.0036 c′Aa

)

×
(

1 TeV

Λ

)2

(Tevatron). (53)

We see once again that the leading contribution comes from the isospin-0 operators. The
region of parameter space in the (cAa,Λ) plane that can explain the AFB for c′Aa = 0 is shown
in Fig. 8.
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Figure 8: Region of parameter space that can explain the AFB measurement at the Tevatron at
one σ for c′Aa = 0.

It is instructive to link the simple analysis given above with models featuring an axigluon
A, i.e., a massive color octet gauge boson coupled to chiral fermionic currents. These models
do generate a forward-backward asymmetry due to the interference between the SM ampli-
tude and that of qq̄ → A → tt̄. If the scattering energies are smaller than the mass of the
axigluon, the interference terms exactly match the term in Eq. (27) proportional to cAa. If
the axigluon has a flavour-universal coupling to fermions with a strength proportional to the
QCD couplings, gs, as in Ref. [57], then the relation cAa/Λ2 = −2g2

s/m
2
A (where mA is the
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Table 1
Coefficients of the operators up to an overall factor g2R for all possible t-channel
particle exchanges (of mass M = Λ) identified by their quantum numbers (Q =
T3 + Y ). ξ = gL

gR
with gL (gR ) the coupling to the density t̄RqL ( Q̄ LuR ) or to the

current Q Lγ µqL (tRγ µuR ). The normalization for the SU(2)L and SU(3)c currents
are the same as in Eq. (1).

Spin SU(3) SU(2) Y cRR c(1)
LL c(3)

LL c(1)
LR c(8)

LR

1 1 1 0 − 1
2 − ξ2

2 −ξ

1 8 1 0 − 1
6 − ξ2

24 − ξ2

8 −ξ

0 1 2 1
2 − 1

6 ξ −ξ

0 8 2 1
2 − 2

9 ξ 1
6 ξ

1 1 3 0 − ξ2

2

1 8 3 0 − 3
8 ξ2 5

24 ξ2

and b parameters can be directly computed from the helicity cross-
sections, namely

C = 1
σ

(σ++ + σ−− − σ+− − σ−+),

b = 1
σ

(σ++ − σ−−), (6)

where the first (second) indice refers to the helicity of the first
(second) top quark. For ORR , C = 1 and b = 0.997. For O(1)

LL and
O(3)

LL , only the sign of b changes. The two remaining operators in
Eq. (1) are characterized by C ≈ 1 and b ≈ 0. C and b are here
calculated on the full cross-section, i.e., without any cut on mtt .
However, C = 1 for ORR , O(1)

LL and O(3)
LL is independent of such

a cut. As a result, such strong spin correlations could be used to
enhance the sensitivity to the signal and to identify the possible
contributing operators.

4. Link with a t-channel exchange

Flavor changing t-channel exchanges invoked to account for the
Tevatron AFB might imply a large same sign top pair production
at the LHC [16,17]. Table 1 shows the coefficients of the operators
of Eq. (1) for any possible particle exchange in the t-channel. If
the new physics is in the reach of the LHC, the left coupling of all
vectors have to be very tiny to satisfy Eq. (3).

In general, no relation exists between same and opposite sign
top pair production. Consequently, the five different parameters
present in (4) cannot be related to those affecting the total cross-
section, mtt̄ (cV v and c′

V v ) and AFB (cAa and c′
Aa) in qq̄ → tt̄ , i.e.,

[7]

Lqq̄→tt̄ =
(
cV v

2
± c′

V v

4

)[
t̄γµT at

][
q̄γµT aq

]

+
(
cAa
2

± c′
Aa

4

)[
t̄γµγ5T at

][
q̄γµγ5T aq

]
, (7)

where the upper (lower) sign should be taken for the up (down)
quark in q. Yet in the special case of a flavor changing t-channel,
each vertex can be replaced by its hermitian conjugate (see Fig. 4)
if the exchanged particle is self-conjugate. The expression of the
coefficients relevant for tt̄ are displayed in Table 2 for the allowed
cases.

The t-channel models are already disfavored by the Tevatron
data due to the relation between the vector and axial coefficients
(|cV v | = |cAa| and |c′

V v | = |c′
Aa|). On the one hand, the agreement

of the measured total cross-section and the mtt̄ distribution with
the SM predictions requires c(′)

V v to be small as shown on Fig. 5. On
the other hand, the observed deviation for AFB [3] implies that c(′)

Aa
should be large. In fact, the color singlet vector [18] and the color

Fig. 4. Possible connection between same and opposite sign top pair production
through a t-channel self-conjugate particle exchange.

Table 2
Expression of the parameters relevant for tt̄ up to an overall factor |gR |2 for a color
singlet particle of mass M = Λ in the t-channel. The coefficients for the correspond-
ing color octets are obtained by multiplying them all by − 1

6 .

Spin SU(2) Y cV v c′
V v cAa c′

Aa

1 1 0 − 1
2 −1 − 1

2 −1

0 2 1
2 − 1

2 (|ξ |2 + 1
2 ) − 1

2
1
2 (|ξ |2 + 1

2 ) 1
2

octet scalar are immediately ruled out since they give the wrong
sign for AFB [7],

δA(mtt̄ < 450 GeV) =
(
0.023+3

−1cAa + 0.0081+6
−4c

′
Aa

)(1 TeV
Λ

)2

,

δA(mtt̄ ! 450 GeV) =
(
0.087+10

−9 cAa + 0.032+4
−3c

′
Aa

)(1 TeV
Λ

)2

.

(8)

After combining all the constraints, we conclude that a color octet
vector is also excluded while a small region, depicted in Fig. 5, re-
mains for the case of a color singlet scalar. This region disappears
if we change the C.L. to 85%. All the allowed regions have been
obtained similarly as in Ref. [7]. This last case is also constrained
for low masses by the Tevatron search for tt production [19]. As-
suming the same acceptance (0.5%) we find that ci ∼ 1 are still
allowed. A very recent analysis based on operators in Eq. (1) gives
similar constraints [20].

We note that when the interference between the new physics
and the SM is negative, the new physics squared (NP2) can can-
cel the effect of the interference on the total cross-section for large
value of the coupling or for small mass. It has been shown [16–18]
that the asymmetry can be explained with a rather light color sin-
glet vector coupled only to the right-handed u and t quarks. Of
course, this region of the parameter space cannot be probed in our
effective approach. However, the invariant mass distribution shape
for a light state in the t-channel is also only marginally consis-
tent with the data (Ref. [21] suggests, though, that this problem
could be alleviated thanks to a reduced acceptance rate of the
top quarks in the forward region). For a color singlet scalar, the
NP2 contribution to the asymmetry is negative and implies that
δA(mtt̄ ! 450 GeV) " 0.2.

5. Link with an s-channel exchange

The effects of any heavy qq-resonance (listed in Ref. [22]) can
be approximated by the four-fermion operators (1) at low en-
ergy (see Table 3). A color anti-triplet scalar cannot contribute
because its coupling is asymmetric under the exchange of the two
fermions. It should also be noted that only axial (vector) couplings
contribute to the uu → tt for the color sextet (anti-triplet) iso-
doublet resonances. The cases of scalar and vector sextet have been
treated in Refs. [23,24]. In general same sign top pair production
through an s-channel particle exchange cannot be related to oppo-
site sign top pair production because of color and electric charges
(see Fig. 6). For the same reason, opposite sign top pair production

[Degrande et al’10,’11]

(using CDF data)

Including  O(Λ-4 )  terms can alleviate the tension.  See analysis by 
Aguilar-Saavedra & Perez-Victoria,1103.2765  and Delaunay et al, 1103.2297.

Most general expression at order O(Λ-2 )  
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3. The forward-backward asymmetry that probes different operators than those affecting
the cross section or the invariant mass distribution could be the first sign of new physics
at the Tevatron. The scale of the new interaction(s) can then be estimated from the
value predicted by our effective Lagrangian approach if a deviation from the SM is
confirmed.

4. The three observables σ, dσ/dmtt̄ and AFB are unable to disentangle between theories
coupled mainly to right- or left-handed top quarks. However, spin correlations allow us
to determine which chiralities of the top quark couple to new physics, and in the case
of composite models, whether one or two chiralities of the top quark are composite.

In composite models, the ratio of cV v and chg is very important since it reflects the
number of composite fields in the SM. However, the peculiar hierarchy between dominant
and subdominant operators cannot be tested in tt̄ production that depends on one class
of operators only. Fortunately, composite models can be further tested through the golden
four-top channel and tt̄bb̄ production at the LHC. Both processes are necessary to identify
the dominant operators and thus to extract their coefficients. The hierarchy between the
operators can be tested and used to estimate the strength of the new strong interaction, gρ.
We stress that the results for top pair production are generic while those for tt̄tt̄ and tt̄bb̄
production require the enhancement due to a strong interaction. These two processes would
disappear in the SM background if they are not enhanced by a factor g2

ρ.
Finally, we stress that in the most recent compositeness scenarios, other mechanisms

could lead to tt̄ + X final states, such as the decays of fermionic top partners, adding to the
richness and interest of these final states. Studying higher dimensional operators capturing
these effects could be interesting. We leave this for future investigation.
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A Fierz transformations

We are collecting here some Fierz transformations that are needed to reduce the basis of
independent dimension-six operators. The same transformations are also useful to compute
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3.5 Spin correlations

We are here focussing on spin correlations which can provide further information on the cou-
pling structure of the production mechanism (for alternative approaches see Ref. [74]). Spin
correlations are good observables to disentangle the contributions from the two operators
ORv and OLv since at high energy OR/Lv should produce mainly right/left-handed tops and
left/right-handed antitops.

In fact, there is only one dimension-six operator affecting the top decay,
(

HQ̄
)

σµνσItW I
µν ,

which however does not modify the maximal spin-correlation in the leptonic decays of the
top quark [24, 75, 76], i.e.,

Γ↑

Γ
=

1 + cos θ

2
,

Γ↓

Γ
=

1 − cos θ

2
, (55)

where θ is the angle between the charged lepton and the spin of the top quark and the
arrows denote the different projections of the top spin. Consequently, the general form of
the normalized differential tt̄ cross section is given by

1

σ

dσ

d cos θ+d cos θ−
=

1

4
(1 + C cos θ+ cos θ− + b+ cos θ+ + b− cos θ−) , (56)

where θ+ (θ−) is the angle between the charged lepton l+ (l−) resulting from the top (antitop)
decay and some reference direction #a (#b). For this study, we chose the helicity basis, #a =
−#b = #p1 where #p1 is the top momentum in the tt̄ rest frame4. There is a one-to-one relation
between the parameters C and b± and the helicity cross sections,

C =
1

σ
(σRL + σLR − σRR − σLL) , (57)

b+ =
1

σ
(σRL − σLR + σRR − σLL) , (58)

b− =
1

σ
(σRL − σLR − σRR + σLL) . (59)

The explicit formulas for the helicity cross sections are given in App. C and lead to (neglect-
ing the contributions from the isospin-1 sector):

C × σ/pb = 2.82+1.06
−0.72 +

[(

0.37+0.10
−0.08

)

chg +
(

0.50+0.13
−0.10

)

cV v

]

×
(

1 TeV

Λ

)2

, (60)

b × σ/pb =
(

0.45+0.12
−0.09

)

cAv ×
(

1 TeV

Λ

)2

, (61)

at the Tevatron, and

C × σ/pb = −166+52
−37 +

[(

−69+17
−13

)

chg +
(

11+1
−1

)

cV v

]

×
(

1 TeV

Λ

)2

, (62)

b × σ/pb =
(

10+1
−1

)

cAv ×
(

1 TeV

Λ

)2

, (63)

4It has been shown [77] that spin correlation effects in the SM are more important at the Tevatron in the
beam basis. However, it appears that the deviations from the SM values due to the operators Ohg, ORv and
OLv are on the contrary smaller in the beam basis.
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ORv and OLv since at high energy OR/Lv should produce mainly right/left-handed tops and
left/right-handed antitops.

In fact, there is only one dimension-six operator affecting the top decay,
(

HQ̄
)

σµνσItW I
µν ,

which however does not modify the maximal spin-correlation in the leptonic decays of the
top quark [24, 75, 76], i.e.,

Γ↑

Γ
=

1 + cos θ

2
,

Γ↓

Γ
=

1 − cos θ

2
, (55)

where θ is the angle between the charged lepton and the spin of the top quark and the
arrows denote the different projections of the top spin. Consequently, the general form of
the normalized differential tt̄ cross section is given by

1

σ

dσ

d cos θ+d cos θ−
=

1

4
(1 + C cos θ+ cos θ− + b+ cos θ+ + b− cos θ−) , (56)

where θ+ (θ−) is the angle between the charged lepton l+ (l−) resulting from the top (antitop)
decay and some reference direction #a (#b). For this study, we chose the helicity basis, #a =
−#b = #p1 where #p1 is the top momentum in the tt̄ rest frame4. There is a one-to-one relation
between the parameters C and b± and the helicity cross sections,

C =
1

σ
(σRL + σLR − σRR − σLL) , (57)

b+ =
1

σ
(σRL − σLR + σRR − σLL) , (58)

b− =
1

σ
(σRL − σLR − σRR + σLL) . (59)

The explicit formulas for the helicity cross sections are given in App. C and lead to (neglect-
ing the contributions from the isospin-1 sector):

C × σ/pb = 2.82+1.06
−0.72 +

[(

0.37+0.10
−0.08

)

chg +
(

0.50+0.13
−0.10

)

cV v

]

×
(

1 TeV

Λ

)2

, (60)

b × σ/pb =
(

0.45+0.12
−0.09

)

cAv ×
(

1 TeV

Λ

)2

, (61)

at the Tevatron, and

C × σ/pb = −166+52
−37 +

[(

−69+17
−13

)

chg +
(

11+1
−1

)

cV v

]

×
(

1 TeV

Λ

)2

, (62)

b × σ/pb =
(

10+1
−1

)

cAv ×
(

1 TeV

Λ

)2

, (63)

4It has been shown [77] that spin correlation effects in the SM are more important at the Tevatron in the
beam basis. However, it appears that the deviations from the SM values due to the operators Ohg, ORv and
OLv are on the contrary smaller in the beam basis.
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at the LHC. The parameters b± are exactly proportional to the difference cRv − cLv and thus
allow us to distinguish between right or left handed top quarks. Additionally, the parameter
C depends quite strongly on chg and cV v and can be used to detect the presence of new
physics as shown in Fig. 10 for the Tevatron and the LHC respectively. The errors on the
contour lines are only of a few percents.
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Figure 10: Top panel: Deviations from the SM prediction at the Tevatron (C = 0.47, b = 0) [78]
for the parameters C (on the left) and b = b+ = b− (on the right) in the region allowed by the
Tevatron. Bottom panel: Deviations at the LHC from the SM prediction (C = −0.31, b = 0) [78].

As expected, the parameters b = b+ = b− only differ slightly from zero at the LHC where
the contributions of ORv and OLv are small. A possible modification of the spin distribution
both at the Tevatron and the LHC is shown in Figs. 11. However, it will be quite difficult
to measure them at the Tevatron where only a few hundreds of events are expected and
observed (Ref. [79] and Ref. [7] therein), while at the LHC we expect about a few millions
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at the LHC. The parameters b± are exactly proportional to the difference cRv − cLv and thus
allow us to distinguish between right or left handed top quarks. Additionally, the parameter
C depends quite strongly on chg and cV v and can be used to detect the presence of new
physics as shown in Fig. 10 for the Tevatron and the LHC respectively. The errors on the
contour lines are only of a few percents.
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Figure 10: Top panel: Deviations from the SM prediction at the Tevatron (C = 0.47, b = 0) [78]
for the parameters C (on the left) and b = b+ = b− (on the right) in the region allowed by the
Tevatron. Bottom panel: Deviations at the LHC from the SM prediction (C = −0.31, b = 0) [78].

As expected, the parameters b = b+ = b− only differ slightly from zero at the LHC where
the contributions of ORv and OLv are small. A possible modification of the spin distribution
both at the Tevatron and the LHC is shown in Figs. 11. However, it will be quite difficult
to measure them at the Tevatron where only a few hundreds of events are expected and
observed (Ref. [79] and Ref. [7] therein), while at the LHC we expect about a few millions
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Summary

5 Summary

In theories that provide a mechanism for mass generation, new physics must have a large cou-
pling to the top quark. It is therefore natural to use top quark observables to test the mech-
anism responsible for electroweak symmetry breaking. We have shown how non-resonant
top-philic new physics can be probed using measurements in top quark pair production at
hadron colliders.

Some of our results already appeared in the literature, although only subsets of dimension-
six operators were considered. For instance, there is an extensive literature [14–17, 21, 22]
on the operator Ohg, the chromomagnetic dipole moment of the top quark, while other
works focused on the effect of additional four-fermion operators on top pair production at
the Tevatron [18–20, 51]. Recently, all relevant operators were properly accounted for in
Ref. [24] which however did not cover the corresponding phenomenological analysis. In our
work, the aim is to provide a complete and self-consistent treatment in a model-independent
approach and, especially, to extract the physics by combining information from the Tevatron
and the LHC.

The analysis can be performed in terms of eight operators, suppressed by the square of
the new physics energy scale Λ. Observables depend on different combinations of only four
main parameters

σ(gg → tt̄), dσ(gg → tt̄)/dt ↔ chg

σ(qq̄ → tt̄) ↔ chg, cV v

dσ(qq̄ → tt̄)/dmtt ↔ chg, cV v

AFB ↔ cAa

spin correlations ↔ chg, cV v, cAv

where chg is the parameter associated with the chromomagnetic dipole moment operator
and cV v, cAa, cAv correspond to particular combinations of four-fermion operators defined in
Section 2.2. Let us summarize our main results on these observables.

1. Since top pairs are mainly produced by gluon fusion at the LHC, the measurement of
the tt̄ cross-section at the LHC will determine the allowed range for chg. In contrast, the
Tevatron cross section is also sensitive to the four-fermion operators and constrains a
combination of chg and cV v. Consequently, the measurements of the total cross section
at the Tevatron and at the LHC are complementary and combining the two will pin
down the allowed region in the (chg, cV v) plane. We emphasize that the Ohg operator
can only be generated at the loop-level in resonance models. Consequently, chg is
expected to be small in such models.

2. The shape of the invariant mass distribution at the Tevatron is sensitive to a combina-
tion of the parameters cV v and chg which is different from the combination controlling
the total cross section. It depends quite strongly on the presence of four-fermion
operators and was used to further reduce the parameter space mainly along the cV v

direction.
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This model-independent analysis can be performed in terms of 8 operators. 
Observables depend on different combinations of only 4 parameters:



34

J
H
E
P
0
3
(
2
0
1
1
)
1
2
5

R

R

L

L

(L,R)

(L,R)

(L,R)

(L,R)

(L,R)

(L,R)

,

(a) (a)

L

R

L

R

LR +

RL

R

L

LR

(b) (b)
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Figure 3. One particle exchange contributions to Ltt̄ in eq. (2.20): (a) the five four-fermion oper-
ators can be directly associated with the exchange of a spin-1 resonance once Fierz transformations
are used, (b) the single two-fermion operator Ohg can be indirectly associated with the exchange of
a spin-0 or spin-2 resonance coupled to two gluons via a fermion loop.

Similarly, the connection within resonance models is quite straightforward using the

standard Fierz relations of appendix A. The exchanges of heavy vectors and scalars lead

to four-fermion operators (explicit formulas are given for instance in ref. [20]) but cannot

contribute to the top chromo-magnetic moment at tree-level as a consequence of SU(3)c
gauge invariance (see figure 3a). Only higher-dimension effective operators quadratic in

the gluon field-strength can be induced in this frame. For example, a heavy scalar or

tensor induces at tree-level the operator
(

HQ̄t + h.c.
)

GµνGµν or
(

HQ̄t − h.c.
)

GµνG̃µν (see

figure 3b). So, the operator Ohg can only be generated at the loop-level and is suppressed

in resonance models.
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FIG. 1: The first two diagrams are contributions to OHG

from Ohg. The third one is induced by OHy and OH . The
operators of Eq. (4) do not contribute to OHG (see Sec. III).

and tree operators can be built from the top and Higgs
current,

OHt = H†DµHt̄R�µtR

OHQ = H†DµHQ̄L�µQL

O(3)

HQ = H†�IDµHQ̄L�I�µQL (4)

The last contributing operator,

OH = @µ

�
H†H

�
@µ

�
H†H

�
, (5)

requires a renormalization of the Higgs field.
The corrections from those operators to higgs produc-

tion by gluon fusion are shown in Fig. 1. They can be
seen in the large top limit as corrections to the OHG

operator

OHG =
1

2
H†HGa

µ⌫G
µ⌫
a . (6)

Therefore, we are going to derive the constraints on OHG

from Higgs production, which we will then re-express in
terms of limits on a combination of the above operators
(2, 3, 4, 5).

One should remark that not only the higgs production
rate is sensitive to the modifications of the top interac-
tions but also the h ! �� decay. The operators OH and
OHy and the electromagnetic version of Ohg all induce

OH� =
1

2
H†HFµ⌫F

µ⌫ . (7)

The main e↵ect of this operator will be to relax the con-
straints from the h ! �� channel. We reiterate that
we do not consider corrections to hWW and hZZ ver-
tices. While h ! �� depends on the top-higgs coupling
at LO (via-one-loop, i.e in the same way that gg ! h is)
h ! WW and h ! ZZ depend on it only at NLO.

III. HIGGS PRODUCTION BY GLUON FUSION

OHG is the only dimension-six operator inducing Higgs
production by gluon fusion at tree-level. Its e↵ect on the
partonic cross-section is

� (gg ! h) = � (gg ! h)SM

✓
1 +

cHG

⇤2

6⇡v2

↵s

◆
2

(8)

where we have taken the heavy top limit for the SM.
The contribution from OHG is quite large compared to
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FIG. 2: Region allowed at 95% C.L. by the ATLAS up-
per bound on the Higgs production cross-section [12] for
µR = µF = mH/2 (solid line). The errors are estimated
by varying the renormalization and factorization scales from
µR = µF = mH/4 (dotted line) to µR = µF = mH (dashed
line). The blue region uses the combination of all channels.
The gray region is obtained using the strongest constraint
among the WW and ZZ channels. The red lines show the rel-
ative deviation compared to the SM Higgs production rate.
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tio to �� goes below 10�3 (SM value) , corresponding to
0 . cH� . 0.1. For larger branching ratio, the �� constraints
are stronger and the allowed region shrinks.

the SM one (6⇡v2/↵s ⇠ 10 TeV2) because the latter is
only generated at the loop-level. Consequently, the up-
per limits on the Higgs production cross-section from the
Tevatron [11] and the LHC [12][13] strongly constrain
the allowed range for cHG, as shown on Fig. 2. For this
figure, we assume that only OHG is added to the SM La-
grangian, i.e. we neglect the modifications of the other
production mechanisms or of the decay widths except for
h ! gg and h ! ��. We used the same NNLO K fac-
tor for the contribution of the OHG as for the SM [14]
since both amplitudes are the same up to a global fac-
tor. The errors on these limits have been estimated by
varying simultaneously the renormalization (µR) and fac-
torization scales (µF ) for the SM and the OHG tree-level
contributions. Other theoretical errors are much smaller.
For MH = 125 GeV, �0.35 . cHG . 0.1. Can you give
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E↵ective interactions involving both the top quark and the Higgs boson are among the least
constrained of all dimension-six operators describing deviations with respect to the Standard Model.
On the other hand, they are expected to hide signs of the new physics responsible for electroweak
symmetry breaking. Particularly challenging is a measurement of the top quark chromomagnetic
dipole moment. One goal of this paper is to show that this operator can be significantly constrained
when combining measurements of Higgs and tt̄h productions, in addition to tt̄. The latest LHC
limits on the Higgs production rate strongly constrain the single dimension-six operator inducing at
tree level a higgs-gluon vertex. We use this bound to put strong constraints on the combination of
four dimension-six operators a↵ecting either the top-higgs or top-gluon vertex and that contribute
to gg ! h with a top loop. While Higgs production by gluon fusion cannot alone discriminate the
di↵erent operators, this can be done using top pair production in association with a Higgs boson.

I. INTRODUCTION

The Standard Model (SM) has been tested with an
impressive accuracy and is so far in agreement with the
experimental data. The room left for new physics at the
TeV scale is therefore getting more and more squeezed.
E↵ective field theory (EFT) provides a model indepen-
dent parametrization of the potential deviations from
the SM while keeping its successes if the new degrees
of freedom are heavy. EFT has been intensively used
for instance in flavor physics to translate the accuracy
of the measurements into strong constraints on the co-
e�cients of the associated operators [1]. Slightly softer
constraints on the operators involving weak bosons have
also been derived from the electroweak precision mea-
surements [2]add refs here. In comparison, the oper-
ators involving the top quark are poorly constrained so
far [3], especially the chromomagnetic moment operator
of the top quark [4, 5], while the ones involving the Higgs
boson also remain largely unconstrained. However, this
status is about to change. In particular, modifications
of the top quark interactions can significantly change the
main Higgs production mechanism at hadron colliders,
which are under scrutiny at the LHC.

In this paper, we focus on operators that involve both
the top and the higgs. On the one hand, they are little
tested. On the other hand, this is where one would par-
ticularly expects new physics associated with electroweak
symmetry breaking to show up. We use Higgs production
by gluon fusion to constrain them. First, their contribu-
tions to gg ! h due to a top loop are computed. We show
in particular that the contribution from the chromomag-
netic operator is finite and not logarithmic divergent as
one would have expected by power counting. Constraints
are then derived from the experimental bound on the
Higgs production rate. Higgs production by gluon fusion
does not allow to distinguish the new contributions since

they are all proportional to the SM amplitude. In section
IV, tt̄h production is proposed as a way to disentangle
the di↵erent operators.

II. OPERATORS OF INTEREST

Recently, constraints on e↵ective Higgs interactions
from the latest Higgs searches have been derived [6–9],
with an emphasis on the d = 6 operators built from the
Higgs and SM gauge bosons. These papers display global
fits in a large parameter space. While Ref. [7] and Ref. [8],
are restricted to a particular UV set-up where only a sub-
class of operators are important, Ref. [6, 9] included all
relevant operators in their analysis. The spirit of this
work is di↵erent in that our motivation is to focus only
on d = 6 operators that involve both the Higgs and the
top quark, and study their e↵ect on Higgs production by
gluon fusion and tt̄h production, assuming in particular
that hWW and hZZ vertices are not a↵ected by new
physics.

We start with the e↵ective lagrangian [10]

L = LSM +
X ci

⇤2

Oi + O
✓

1

⇤3

◆
. (1)

Why not +O �
1/⇤4

�
? Only the chromomagnetic mo-

ment operator modifies the interactions between the glu-
ons and the top quark,

Ohg =
�
Q̄LH

�
�µ⌫T atRGa

µ⌫ , (2)

where �µ⌫ = i
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[�µ, �⌫ ] and T a is such that Tr
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=

�ab/2. Besides, one operator contains the top density

OHy = H†H
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HQ̄L
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FIG. 1: The first two diagrams are contributions to OHG

from Ohg. The third one is induced by OHy and OH . The
operators of Eq. (4) do not contribute to OHG (see Sec. III).

and tree operators can be built from the top and Higgs
current,

OHt = H†DµHt̄R�µtR

OHQ = H†DµHQ̄L�µQL

O(3)

HQ = H†�IDµHQ̄L�I�µQL (4)

The last contributing operator,

OH = @µ

�
H†H

�
@µ

�
H†H

�
, (5)

requires a renormalization of the Higgs field.
The corrections from those operators to higgs produc-

tion by gluon fusion are shown in Fig. 1. They can be
seen in the large top limit as corrections to the OHG

operator

OHG =
1

2
H†HGa

µ⌫G
µ⌫
a . (6)

Therefore, we are going to derive the constraints on OHG

from Higgs production, which we will then re-express in
terms of limits on a combination of the above operators
(2, 3, 4, 5).

One should remark that not only the higgs production
rate is sensitive to the modifications of the top interac-
tions but also the h ! �� decay. The operators OH and
OHy and the electromagnetic version of Ohg all induce

OH� =
1

2
H†HFµ⌫F

µ⌫ . (7)

The main e↵ect of this operator will be to relax the con-
straints from the h ! �� channel. We reiterate that
we do not consider corrections to hWW and hZZ ver-
tices. While h ! �� depends on the top-higgs coupling
at LO (via-one-loop, i.e in the same way that gg ! h is)
h ! WW and h ! ZZ depend on it only at NLO.

III. HIGGS PRODUCTION BY GLUON FUSION

OHG is the only dimension-six operator inducing Higgs
production by gluon fusion at tree-level. Its e↵ect on the
partonic cross-section is

� (gg ! h) = � (gg ! h)SM

✓
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cHG
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2

(8)

where we have taken the heavy top limit for the SM.
The contribution from OHG is quite large compared to
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FIG. 2: Region allowed at 95% C.L. by the ATLAS up-
per bound on the Higgs production cross-section [12] for
µR = µF = mH/2 (solid line). The errors are estimated
by varying the renormalization and factorization scales from
µR = µF = mH/4 (dotted line) to µR = µF = mH (dashed
line). The blue region uses the combination of all channels.
The gray region is obtained using the strongest constraint
among the WW and ZZ channels. The red lines show the rel-
ative deviation compared to the SM Higgs production rate.

!0.3 !0.2 !0.1 0.0 0.1 0.2 0.3 0.4
!0.6

!0.4

!0.2

0.0

0.2

cHΓ!1TeV"##2

c
H

G
!1

T
e
V
"#
#2

mH$125 GeV

FIG. 3: The blue and red lines are the limits from h !
(WW,ZZ) and h ! �� respectively. The WW/ZZ con-
straints on cHG are stronger only when the branching ra-
tio to �� goes below 10�3 (SM value) , corresponding to
0 . cH� . 0.1. For larger branching ratio, the �� constraints
are stronger and the allowed region shrinks.

the SM one (6⇡v2/↵s ⇠ 10 TeV2) because the latter is
only generated at the loop-level. Consequently, the up-
per limits on the Higgs production cross-section from the
Tevatron [11] and the LHC [12][13] strongly constrain
the allowed range for cHG, as shown on Fig. 2. For this
figure, we assume that only OHG is added to the SM La-
grangian, i.e. we neglect the modifications of the other
production mechanisms or of the decay widths except for
h ! gg and h ! ��. We used the same NNLO K fac-
tor for the contribution of the OHG as for the SM [14]
since both amplitudes are the same up to a global fac-
tor. The errors on these limits have been estimated by
varying simultaneously the renormalization (µR) and fac-
torization scales (µF ) for the SM and the OHG tree-level
contributions. Other theoretical errors are much smaller.
For MH = 125 GeV, �0.35 . cHG . 0.1. Can you give

Constraints from higgs searches on top-philic new physics
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correct numbers? I just guessed by eyes from Fig.

2. We also show in gray how the constraints on cHG are
relaxed when including the e↵ect of OH� . The exclusion
in the plane (cHG, cH�) is shown in Fig. 3 .

The constraints on cHG of Fig. 2 translate into con-
straints on a combination of the coe�cients of the oper-
ators (2, 3, 4, 5). The one-loop correction from Ohg to
the operator OHG is expected to diverge logarithmically
since both operators are of dimension-six. However, its
one-loop contribution is finite [15] and can be written as
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since the dependence on mH is tiny for a light Higgs
boson. The operators OHy and OH renormalize the top
mass
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where

cy = cH +
vp
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< (cHy) (12)

Their contributions are then easily obtained as a simple
rescaling of the SM contribution [16].
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The other three operators (4) do not have any contri-
bution to Higgs production by gluon fusion. In fact, the
vertex htt̄ comes from the sum of those operators and of
their hermitian conjugates [29]. The relevant part of the
operators can thus be written as
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FIG. 4: Diagram leading to the operator OHG with the
particles in the loop labeled by their transformations under
SU(3) ⇥ SU(2) ⇥ U(1), i.e. (c, T, Y ) if c̄ ⌦ c0 3 8. If the
particles in the loop are bosons, additional diagrams can be
obtained by replacing one or two internal lines and their two
adjacent vertices by a single vertex.

because the vector current is conserved. Their contribu-
tions to Higgs production through the e↵ective operator
H†HGµ⌫ eGµ⌫ , generated by the anomaly, vanish due to
parity. This result is consistent with the operator rela-
tions derived in [17].

Taking mt = 175 GeV, mH = 125 GeV, v = 246 GeV
and gs = 1.2, we obtain

�cHG ⇡ 0.03<chg � 0.006cy. (15)

Even if the e↵ects due to the new interactions of the top
quark are loop suppressed, they cannot be neglected. The
coe�cient cy, probing the relation between the top mass
and its yukawa, is poorly constrained so far (see recent
constraints on c = 1 � cy(v/⇤)2 in Ref. [7, 8]). Similarly,
the present constraints on chg due to top pair produc-
tion [4] including the latest CMS combination [18], i.e.
�1.2 . chg(TeV/⇤)2 . 2.5, still allow the contribution
from the chromomagnetic operator to have a noticeable
e↵ect on the allowed range for cHG as illustrated in Fig. 8.
In this figure, we show the constraints on chg expected
from a measurement of the tt̄ cross section at 14 TeV
with a 7% precision consistent with the SM value known
with a 13% theoretical uncertainty, using [4]:
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The next question is about the typical expectation for
the size of the coe�cient cHG. For example, the one-
loop contributions from OH and OHy have been shown
to be as large as the OHG contribution in little Higgs
models [16]. The reason is that those operators can be
induced by the tree-level exchange of a heavy particle
while OHG is only generated at the loop-level in a per-
turbative UV completion of the SM (see Fig. 4). The op-
erator OH is also enhanced compared to OHG in strongly
interacting Higgs models [19].

On the contrary, the chromomagnetic operator can
hardly be enhanced. It is also generated only at the loop-
level (see Fig. 5) in perturbation theory and thus for Ohg

to be the dominant new physics e↵ects requires OHG to
be relatively suppressed. While the diagram of Fig. 4 can
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FIG. 5: Diagrams leading to the operator Ohg if c̄0 ⌦ c00 3 8,
c̄ ⌦ c0 3 3 and c̄ ⌦ c00 3 3. The internal fermion and boson
lines can be exchanged and the internal bosons do not have
to be scalar. Similarly as for Fig. 4, additional diagrams can
be obtained by removing one internal boson propagator.
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because the vector current is conserved. Their contribu-
tions to Higgs production through the e↵ective operator
H†HGµ⌫ eGµ⌫ , generated by the anomaly, vanish due to
parity. This result is consistent with the operator rela-
tions derived in [17].
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and gs = 1.2, we obtain
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tion [4] including the latest CMS combination [18], i.e.
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from a measurement of the tt̄ cross section at 14 TeV
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while OHG is only generated at the loop-level in a per-
turbative UV completion of the SM (see Fig. 4). The op-
erator OH is also enhanced compared to OHG in strongly
interacting Higgs models [19].
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level (see Fig. 5) in perturbation theory and thus for Ohg

to be the dominant new physics e↵ects requires OHG to
be relatively suppressed. While the diagram of Fig. 4 can

(c, t, y � 2

3

) (c, t ± 1,

y � 1

6

)

(c�, t, y) (c��, t, y)

(c, t, y � 1

6

)

(c�, t ± 1,

y + 1

2

)
(c�, t, y)

(c��, t, y)

1

FIG. 5: Diagrams leading to the operator Ohg if c̄0 ⌦ c00 3 8,
c̄ ⌦ c0 3 3 and c̄ ⌦ c00 3 3. The internal fermion and boson
lines can be exchanged and the internal bosons do not have
to be scalar. Similarly as for Fig. 4, additional diagrams can
be obtained by removing one internal boson propagator.

2

.................

............ ............

FIG. 1: The first two diagrams are contributions to OHG

from Ohg. The third one is induced by OHy and OH . The
operators of Eq. (4) do not contribute to OHG (see Sec. III).

and tree operators can be built from the top and Higgs
current,
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requires a renormalization of the Higgs field.
The corrections from those operators to higgs produc-

tion by gluon fusion are shown in Fig. 1. They can be
seen in the large top limit as corrections to the OHG
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Therefore, we are going to derive the constraints on OHG

from Higgs production, which we will then re-express in
terms of limits on a combination of the above operators
(2, 3, 4, 5).

One should remark that not only the higgs production
rate is sensitive to the modifications of the top interac-
tions but also the h ! �� decay. The operators OH and
OHy and the electromagnetic version of Ohg all induce
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The main e↵ect of this operator will be to relax the con-
straints from the h ! �� channel. We reiterate that
we do not consider corrections to hWW and hZZ ver-
tices. While h ! �� depends on the top-higgs coupling
at LO (via-one-loop, i.e in the same way that gg ! h is)
h ! WW and h ! ZZ depend on it only at NLO.

III. HIGGS PRODUCTION BY GLUON FUSION

OHG is the only dimension-six operator inducing Higgs
production by gluon fusion at tree-level. Its e↵ect on the
partonic cross-section is
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straints on cHG are stronger only when the branching ra-
tio to �� goes below 10�3 (SM value) , corresponding to
0 . cH� . 0.1. For larger branching ratio, the �� constraints
are stronger and the allowed region shrinks.

the SM one (6⇡v2/↵s ⇠ 10 TeV2) because the latter is
only generated at the loop-level. Consequently, the up-
per limits on the Higgs production cross-section from the
Tevatron [11] and the LHC [12][13] strongly constrain
the allowed range for cHG, as shown on Fig. 2. For this
figure, we assume that only OHG is added to the SM La-
grangian, i.e. we neglect the modifications of the other
production mechanisms or of the decay widths except for
h ! gg and h ! ��. We used the same NNLO K fac-
tor for the contribution of the OHG as for the SM [14]
since both amplitudes are the same up to a global fac-
tor. The errors on these limits have been estimated by
varying simultaneously the renormalization (µR) and fac-
torization scales (µF ) for the SM and the OHG tree-level
contributions. Other theoretical errors are much smaller.
For MH = 125 GeV, �0.35 . cHG . 0.1. Can you give
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.................
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FIG. 1: The first two diagrams are contributions to OHG

from Ohg. The third one is induced by OHy and OH . The
operators of Eq. (4) do not contribute to OHG (see Sec. III).

and tree operators can be built from the top and Higgs
current,

OHt = H†DµHt̄R�µtR

OHQ = H†DµHQ̄L�µQL

O(3)

HQ = H†�IDµHQ̄L�I�µQL (4)

The last contributing operator,

OH = @µ

�
H†H

�
@µ

�
H†H

�
, (5)

requires a renormalization of the Higgs field.
The corrections from those operators to higgs produc-

tion by gluon fusion are shown in Fig. 1. They can be
seen in the large top limit as corrections to the OHG

operator

OHG =
1

2
H†HGa

µ⌫G
µ⌫
a . (6)

Therefore, we are going to derive the constraints on OHG

from Higgs production, which we will then re-express in
terms of limits on a combination of the above operators
(2, 3, 4, 5).

One should remark that not only the higgs production
rate is sensitive to the modifications of the top interac-
tions but also the h ! �� decay. The operators OH and
OHy and the electromagnetic version of Ohg all induce

OH� =
1

2
H†HFµ⌫F

µ⌫ . (7)

The main e↵ect of this operator will be to relax the con-
straints from the h ! �� channel. We reiterate that
we do not consider corrections to hWW and hZZ ver-
tices. While h ! �� depends on the top-higgs coupling
at LO (via-one-loop, i.e in the same way that gg ! h is)
h ! WW and h ! ZZ depend on it only at NLO.

III. HIGGS PRODUCTION BY GLUON FUSION

OHG is the only dimension-six operator inducing Higgs
production by gluon fusion at tree-level. Its e↵ect on the
partonic cross-section is

� (gg ! h) = � (gg ! h)SM
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µR = µF = mH/4 (dotted line) to µR = µF = mH (dashed
line). The blue region uses the combination of all channels.
The gray region is obtained using the strongest constraint
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straints on cHG are stronger only when the branching ra-
tio to �� goes below 10�3 (SM value) , corresponding to
0 . cH� . 0.1. For larger branching ratio, the �� constraints
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the SM one (6⇡v2/↵s ⇠ 10 TeV2) because the latter is
only generated at the loop-level. Consequently, the up-
per limits on the Higgs production cross-section from the
Tevatron [11] and the LHC [12][13] strongly constrain
the allowed range for cHG, as shown on Fig. 2. For this
figure, we assume that only OHG is added to the SM La-
grangian, i.e. we neglect the modifications of the other
production mechanisms or of the decay widths except for
h ! gg and h ! ��. We used the same NNLO K fac-
tor for the contribution of the OHG as for the SM [14]
since both amplitudes are the same up to a global fac-
tor. The errors on these limits have been estimated by
varying simultaneously the renormalization (µR) and fac-
torization scales (µF ) for the SM and the OHG tree-level
contributions. Other theoretical errors are much smaller.
For MH = 125 GeV, �0.35 . cHG . 0.1. Can you give
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4

be obtained by using twice the lower part of the second
diagram in Fig. 5, the first diagram in Fig. 5 with c = 1
does not imply the presence of OHG. As a consequence,
it is possible to generate the chromomagnetic operator
at one-loop and not the operator OHG. An explicit ex-
ample is given in Appendix A. While dominant in this
example, the e↵ects from the chromomagnetic operators
are too small to be observed. Alternatively, the hierar-
chy may come from strongly coupled theories and can be
estimated with the help of Naive Dimensional Analysis
(NDA) [20, 21]. If only the right-handed top is strongly
coupled, the dominant operator involves four top quarks
but does not contribute even at two-loop [22]. In that
case, the coe�cient of the chromomagnetic operator is
only suppressed by one power of the strong coupling com-
pared to two for cHG and both operators can have simi-
lar contribution when the strong coupling approaches 4⇡.
However, its e↵ects may again be to small to be observed.
We now move to study the e↵ect of these operators on
tt̄h production.

IV. tt̄h PRODUCTION

While both Higgs direct coupling to the gluons and
new top interactions significantly a↵ect Higgs produc-
tion, they cannot be distinguished using this process only.
Contrary to Higgs production by gluon fusion, the four
operators OHG, Ohg, OH and OHy all contribute to tt̄h
at the tree-level (see Fig. 6). The three operators in eq. 4
have no contribution for this process due to parity. There
is only one additional operator a↵ecting this process,

OG = fABCGA⌫
µ GB⇢

⌫ GCµ
⇢ . (17)

The four-fermion operators cannot modify the main pro-
cess, i.e. gluon fusion. Consequently, their contributions
are about one order of magnitude smaller and have not
been included. The contribution from OH and OHy, be-
ing just a rescaling of the top Yukawa coupling (see Eq.
11 and 12), is proportional to the SM cross section:

� (pp ! tt̄h) = � (pp ! tt̄h)SM

✓
1 � cy

v2

⇤2

◆
2

(18)

and this relation holds at NLO. The total cross-section
at 14 TeV is given by (check the errors on the SM

value, it should be of the order of 15% and not

3%)

� (pp ! tt̄h)

fb
= 611+15

�18

+
⇥
457+127

�91

chg � 49+15

�10

cG

+ 185+67

�43

<cHG � 67+23

�16

cy
⇤✓TeV

⇤

◆
2

+
⇥
506+136

�99

c2

hg + 1132+323

�232

c2

G

+ 48+20

�13

c2

HG + 2+0.7
�0.5c

2

y

⇤✓TeV
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◆
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(19)
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FIG. 6: Examples of diagrams for tt̄h production from the SM
(a), from the chromomagnetic operator Ohg (b) and (c) and
from the OHG operator (d). OH and OHy lead to a simple
rescaling of the SM contribution.
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tion of the Higgs mass of the interference between the SM
and the main dimension-six operators over the SM one us-
ing CTEQ6l1 pdf set and µR = µF = mt = 174.3 GeV.
The results are very similar at 7 TeV. This figure should
be redone to remove the case cHG = 2 which is ex-
cluded. What about showing chg = �1.5? Moreover,
we should show the value of the deviation including
the 1/⇤4 term. Also, why do you fix ⇤? We can just
fix chg(TeV/⇤)

2 = 1,�1.5

Why is the coe�cient of c2

G so big? at 7 TeV by
Can we write the 1/⇤4

terms also at 7 and 8 TeV?

� (pp ! tt̄h)

fb
= 86.3 + [63.1<cHG � 5.6cG + 25.3cHG

� 10.2cy]
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Using tth to constrain the chromomagnetic operator
-

constraints from h production

constraints from tth production

Degrande et al, 1205.1065
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FIG. 8: In blue, the region allowed by the Higgs production constraints at 7 TeV for mH = 125 GeV. The green lines delimit
the 2 allowed tiny bands obtained if the Higgs cross-section is measured at its SM value with a precision of 20 %. The yellow
region is obtained by assuming a 40% precision on the tt̄h cross-section at 14 TeV with the measured central value matching the
SM prediction and cG = 0. The three plots correspond respectively to cy(TeV/⇤)2 =0, -4, +5. The upper plots are obtained
when neglecting the O(1/⇤4) terms in the tt̄H cross section. The bottom plots instead include these higher order terms.

and the SM contributions have a very similar behavior.
The interference with the diagrams in which the Higgs is
connected at the e↵ective vertex do not vanish but are
apparently suppressed. The shape e↵ects are only ex-
pected if the new physics scale ⇤ is close to the maximal
energy probed because they are due only to the 1/⇤4

contributions. The plots on the right show how the dis-
tributions can di↵er with respect to the SM in the case
chg(TeV2/⇤2) = 1.

Finally, spin correlations could exhibit some depen-
dence on chg. In the case of tt̄ production, the deviations
due to chg were of the order of a few percents [5]. For tt̄h,
the measurement will be much more challenging and we
therefore do not compute the associated spin correlations
here but might return to them in due time.

V. CONCLUSION

Only one dimension-six operator, OHG, generates a
tree level coupling between the Higgs boson and the
gluons. This operator has the largest contribution to
Higgs production. Nevertheless, the three operators
modifying the contribution from the top loop also have
sizable e↵ects compared to the SM one and, in a large
class of models, can be comparable to the e↵ect of OHG

due to the hierarchy between their coe�cients. All those

operators are already constrained by the present limits
on Higgs production at hadron colliders. However, Higgs
production by gluon fusion only constrains a linear
combination of these operators and cannot discriminate
between them. Interestingly, a light Higgs makes real the
possibility of partially solving this issue by using Higgs
production in association with a pair of top quarks.
Contrary to Higgs production, the leading contribution
in this process comes from the chromomagnetic operator
Ohg, which can therefore be further constrained from
the measurement of the total tt̄h cross-section. Shape
e↵ects do not come from the interference terms and are
dominated by the square of the amplitude involving an
e↵ective vertex and could thus be observable for large
chg values only.
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Let us now imagine the top partners are too heavy to 
be accessible at the LHC (i.e >~1.5-2 TeV),
 and heavy gluons also too heavy (>~4 TeV )

Where shall we search for signs of top compositeness ?

Back to models of top compositeness
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Enhanced four-top production in composite top models

In models of composite tops, the operators contributing 
directly to top pair production are subdominant compared 
to four-top operators  (from Naive Dimensional Analysis)

In this case, a much better probe of the dominant 
dynamics is the direct production of four top quarks

typical LHC cross sections at 14 TeV: 10 - 100 fb

1
�2

(tR�µtR)(tR�µtR)

t

t
g

g

t

t
Xt

t-

[Pomarol, Serra’08]
[Lillie, Shu, Tait ’08]

spectacular events with 12 partons in the final state 

(The dominant operators are those which contain only fields 
from the strong sector, scale as             )g2

�

g� g�1
�

4-fermion op. contributing directly to tt production 
scale at best as       while Ohg scales as 

- coupling of the 
strong sector

1 � g� � 4�

(obtained after 
integrating out 

heavy resonances)
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Four-top production in the Standard Model

t

t

t

t

q

qt

t

t

t

g

g

+ + ....

σLHC  ~ 7.5 fb  @ 14 TeV 

➾ 4 top final state sensitive to several classes of new TeV scale physics

88 %

σLHC  ~ 0.2 fb  @ 7 TeV 

e.g. SUSY (gluino pair production with g → t t χ0)~ -

top compositeness

σtevatron  < 10^-4 fb  
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top polarization

The lightest mass eigenstate is identified as the top quark. It can have a large coupling to Z ′ through its

ψ component.

Four-top production arises via the diagrams shown in Fig. 3. Given that the Z ′ under consideration

has suppressed couplings to all SM fields (induced by the kinetic mixing χ) but the top quarks, constraints
are weak and a mass of a few hundreds of GeV is allowed, which can lead to large four-top signals at the

LHC. A detailed study is presented in [14] and compares with the non-resonant four-top events obtained

from the effective four-fermion interaction (tRγµtR)(tRγµtR)/Λ2 leading to the diagram 1(d). The

corresponding cross sections at LHC as a function of the Z ′ mass and Λ are shown in Fig. 2.

t

t

t

t
−

−
Z’

t

t

t

t

−

−

Z’

Fig. 3: Four-top production via Z ′

An interesting way to probe the properties of the top interactions relies on measuring the top

polarization. The SM four top production being dominated by parity invariant QCD processes, we expect

to generate an equal number of left and right-handed pairs. However, in the new physics models discussed

here, there is a strong bias towards RH tops. The angular distribution of the leptons from the top decays

enables to analyze the polarisation of the top quarks. The differential cross section can be written as

1

σ

dσ

d cos θ
=

A

2
(1 + cos θ) +

1 − A

2
(1 − cos θ) (3)

where θ is the angle between the direction of the lepton in the top rest frame and the direction of the top
polarization. The corresponding distribution is illustrated in Fig. 4.

In Fig. 5, we show the invariant mass Mtt of the tt pair coming from the Z ′ for different MZ′

masses as well as Mtt from the SM four-top events. The latter peaks close to 600 GeV. We also display

the maximum of the tt pair transverse energy distribution as a function ofMZ′ . Fig. 6 compares theMtt

distributions of the tt pair emitted by a Z ′ withMZ′ = 1.2 TeV, the spectator tt pair, which peaks around
500 GeV and the tt pair produced by the effective 4-fermion contact interaction.

3. RECONSTRUCTION

Reconstruction of four top events is a challenge to the detector and event reconstruction. The decay of the

top quarks gives rise to twelve fermions. To benefit from the same-sign lepton signature two W bosons

must decay to lepton-neutrino. The presence of two escaping neutrinos then prevents a complete recon-

struction of the twelve momenta. In the most abundantly produced final states, most of the remaining

fermions will be quarks, giving rise to a large jet multiplicity.

The minimal approach to reconstruction merely registers the scalar sum of the transverse energy

of all final state objects. The HT distribution for a 500 GeV and 1 TeV Z’ resonance as described in

the previous section are shown in Figure 7. For sufficiently large resonance mass, i.e. for mZ′ = 1

TeV in the central panel, the signal distribution clearly differs from that of some important (reducible)

backgrounds like tt̄W±+ jets and tt̄W+W−.

A further experimental signature of the four-top final states is the large b-jet multiplicity which

can be used as a powerful tool to extract the signal even coming from a heavy resonance as shown in

θ is the angle between the direction of the (highest pT) lepton 
in the top rest frame and the direction of the top polarisation

A: fraction of RH tops

In the models of interest, 4-top production yields an excess of right-handed tops 
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Figure 11: Normalized di↵erential cross-section for pp! tt̄tt̄ versus cos ✓X where X is the lepton coming from the
decay of the scattered top.

The polarization of the top quarks can be analyzed from the angular distribution of their decay

products. In the decay channel t ! W+b ! l+⌫b, qq̄0b, the angular distribution of the “spin

analyzers” X = l+, ⌫, q, q̄0, W+, b is given by

1

�

d�

d cos ✓
X

=
1

2
(1 + ↵

X

cos ✓
X

) , (53)

with ✓
X

being the angle between the direction of X (in the top rest frame) and the direction of the

top polarization. The constants ↵
X

2 [�1, 1], take in the SM the approximate values ↵
l

+ = ↵
d̄

= 1,

↵
⌫

= ↵
u

= �0.32, ↵
W

+ = �↵
b

= 0.41 [24]. From Eq. (53) we can obtain the top production

di↵erential cross-section

1

�

d�

d cos ✓
X

= F
R

+ F
L

=
A

2
(1 + ↵

X

cos ✓
X

) +
1� A

2
(1� ↵

X

cos ✓
X

), (54)

where F
R

and F
L

are respectively the angular distributions for right- and left-handed quarks and

A corresponds to the fraction of right-handed quarks produced (therefore A 2 [0, 1]). In the SM we

expect A ⇠ 1/2. In Fig. 11 we show the normalized di↵erential cross-section for four-top production

at the LHC as a function of cos ✓
X

where X = l+ is the lepton coming from the top with the highest

p
T

. We show this for tops arising either from O4t

(4t) or O4q

(4q), and compare with the SM case.

By fitting Fig. 11 with the distribution Eq. (54) we find A ' 0.5 for the SM, while A ' 0.8 and 0.2

respectively for the 4t and 4q case. From Eq. (54) one can calculate forward-backward asymmetries

in the lepton channel similar to those of Ref. [25] that can be useful to disentangle the helicity of

the top if an excess in the four-top production is found at the LHC.

23

[Pomarol, Serra’08]
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Effective field theory approach to BSM: 
characterizes new physics in a model-independent way, 

useful to set bounds on non-resonant  new physics

2011 LHC data already rules out large region of parameter space

Models of top compositeness can lead to zero signal at 7-8 TeV 
while non-zero signals (4 top production + top partners 

production) at 14 TeV  

New constraints on the 4-fermion and the chromomagnetic 
operators and more to come 

complementarity between Higgs, tt and ttH production- -

Summary
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Part II
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The main goal of the LHC: 

Understand why MEW << MPlanck  

The Hierarchy Problem has been the 
guideline of theorists for over 30 years

However, since LEP II, naturalness arguments 
have been under high stress and present null 

LHC searches are confirming theorists’ anxiety
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Part II

✔The hierarchy problem associated with the Higgs

✔The strong CP problem

✔The “why so” puzzles
gauge coupling unification

fermion mass hierarchy
proton stability

charge quantization

why 3 generations

The  SUSY solution
The  extra dimensional solutions

✔The  Flavour problem

The 4D strongly interacting solutions

observational
 facts unexplained 

by the SM

✔ The dark matter problem

✔ The matter antimatter asymmetry problem
{

fine-tuning 
problems{ [R. Rattazzi]

[D. Kazakov]

[G. Isidori]

⇝ ) GUTs
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Good reason for unification :
Anomaly cancellation in the SM

Highly non-trivial cancellation and suggestive 
connection of quarks and leptons 

There are gauge groups for which the anomalies 
automatically cancel, e.g. SO(10)

The SM as a remnant of a GUT theory?

Qe = T3 + Y
Quantum numbers and anomaly cancellation

1 SU(N)–G2: TG = 1, so need
∑

R TrTA
R = 0, trivial for N > 1

U(1)Y:
∑

fermions Y = (+1/6) · 2 · 3 + (−2/3) · 3 + (+1/3) · 3
+(−1/2) · 2 + 1 = 0! Quarks and leptons cancel separately.

2 SU(3)3 automatic: QCD is vectorlike (# of 3 = # of 3)
3 SU(2)3 automatic: 1

8

∑

doublets Tr σA{σB ,σC} = 1
4δ

BCTr σA = 0
4 U(1)3Y:

∑

fermions Y 3 =
(+1/6)3 · 2 · 3 + (−2/3)3 · 3 + (+1/3)3 · 3 + (−1/2)3 · 2 + 13 = 0

Cancellation between quarks and leptons in each generation!

5 SU(3)2–U(1)Y: ∝
∑

quarks Y = 0 (just like gravitational anomaly)
6 SU(2)2–U(1)Y:

∝
∑

doublets Y Tr{σB ,σC} ∝
∑

doublets Y = (+1/6) · 3 + (−1/2) = 0

Cancellation between quarks and leptons again!

The need to cancel anomalies explains why charges are quantized in
the fractions they are, i.e. defines generations.

Homework: Prove there are exactly 3 generations. . . just kidding
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Anomaly cancellation
a consequence of current conservation

Recall gauge invariance implies current conservation, ∂µJµ = 0

q

p1

p2

J
 µ

qµJµ = u(p1)/qv(p2)

= u(p1)(/p1 + /p2)v(p2)

= 0

u(p1)/p1 = 0, /p2v(p2) = 0

J
 µ

J
 ν

J
 ρ

+ J
 µ

J
 ν

J
 ρ

Need ∂µJµ = ∂νJ
ν = ∂ρJ

ρ = 0

This is not satisfied unless
∑

R TrTA
R {TB

R , TC
R } = 0, where

TA
R is a generator of rep. R.

Homework: Show a vector-like gauge theory is always anomaly-free.
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Good reason for unification II :
Charge quantization

simple unification group -> charge quantization

Eigen values of the generators of the abelian U(1) are continuous 
e.g. in the symmetry of translational invariance of time,  
there is no restriction in the (energy) eigen values.

Eigen values of the generators of a simple non-abelian group are discrete 

e.g. in SO(3) rotations, the eigen values of the third component of angular 
momentum can take only integers or 1/2 integers values. In SU(5), since 
the electric charge is one of the generators,  its eigen values are discrete 
and hence quantized.

Qe = T3 + Y

How come is the electric charge quantized?

SM matter content fits nicely into SU(5)
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Quarks carry 1/3 of the lepton charge because they have 3 colors.
The SU(5) theory provides a rationale basis   for understanding  
particle charges and the weak hypercharge assignment in the SM

relation between color SU(3) and electric charge.



47

Good reason for unification III

we observe different couplings 
but it is a low energy artefact

4. In low-µ split SUSY, the two lightest neutralinos and the lightest chargino have

almost degenerate masses. Even the radiative corrections cannot lead to a mass dif-

ference more than one GeV between the lightest chargino and the lightest neutralino.

Therefore, the decay of the lightest chargino only produces very soft pions or leptons

in the final state, which may be too di�cult to detect at high energy colliders. In

split SUSY, the chargino and neutralino can give rise to interesting signals at hadron

and e+e� colliders [14, 15, 16]

Note that the present low-µ split SUSY scenario is rather similar to the focus-point

supersymmetry in the phenomenological aspects [17]. Recently, there have been works

exploiting the idea of minimal extensions of the SM to satisfy the dark matter and other

constraints [18, 19].

The organization of the paper is as follows. In the next section, we examine the

gauge coupling unification. In Sec. 3, we describe the mass spectrum of the neutralinos

and charginos. Section 4 deals with the couplings relevant to the studies of dark matter

and collider phenomenology. In Sec. 5, we discuss the dark matter relic density and the

direct and indirect detection. In Sec. 6, we study the phenomenology at hadron and e+e�

colliders. We conclude in Sec. 7.

2. Gauge Coupling Unification

The general form of the one-loop renormalization group equations for the gauge couplings

between any two mass scales MX and MY is given by

1

�i(M2
X)

=
1

�i(M2
Y )
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4�
ln

✓
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X
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Y

◆
, (2.1)

where i = 1, 2, 3 are indices representing the U(1)Y , SU(2)L, and SU(3)C gauge couplings,

respectively. The di�erences among the SM, MSSM, ordinary split SUSY, and low-µ split

SUSY scenarios reside in the following values of the beta functions :
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Figure 2: values of b ⇥ (�1) in various models.
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Figure 3: One-loop evolution of gauge couplings in the SM (black), in SUSY (blue), in split-
SUSY (green) and in composite higgs and composite top models i.e. SM�(tR, H) (magenta).

Higgses into some complete SU(5) multiplets, and then somehow make the extra fields much
heavier than the doublet. However, this seems very di�cult: one needs to give a mass to
the extra fields that are 1014 times larger than the doublets. For example in the simplest
case the two Higgs doublets are embedded as Hu =2?5,Hd =2? ??5. In this case we had
to add an extra triplet and anti-tripletof SU(3), which have to be very heavy, while the
doublets from the same multiplet light. This is another naturalness problem that is specific
to SUSY GUTs. If the mass of the triplet was too low, the beta functions would change,
and unification of couplings would not occur.

Even if one can somehow arrange naturally for the triplets to be heavy (there are some
nice natural solutions to the doublet-triplet splitting problem), they still contribute to proton
decay at a rate that is usually too large. The reason is that due to supersymmetry and grand
unification the fermionic partners of heavy color triplet Higgses necessarily couple to the SM
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SM matter content fits nicely into SU(5)
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SU(5) adjoint rep.
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additional U(1) factor that 
commutes  with SU(3)*SU(2)
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Gauge coupling unification

The evolution of gauge couplings is controlled 
by the renormalization group equations

1 GUTs

1.1 Gauge coupling unification

The evolution of gauge couplings is controlled by the renormalization group equations

d↵(µ)

d log µ
⌘ �(↵(µ)) or equivalently
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: accounts for threshold corrections 
from the GUT and weak s and the effect 

of Planck suppressed operators

�i

bi : defined by the particle content

i = SU(3), SU(2), U(1)
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We have three equations and two unknowns (↵GUT and MGUT ). Using
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(12)

x 3/5
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3 equations and 2 unknowns
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i = SU(3), SU(2), U(1)

(↵GUT ,MGUT )

1 consistency relation for unification

Using

We have three equations and two unknowns (↵GUT and MGUT ). Using

↵1 =
5

3

1

cos2 ✓W
↵em and ↵2 =

↵em

sin2 ✓W
(12)

we can derive the following consistency condition,

✏ijk(↵
�1
i � �i)(bj � bk) = 0 (13)

If the �i contributions are universal (�1 = �2 = �3) or negligible , this translates into

sin2 ✓W =
3(b3 � b2) + 5(b2 � b1)

↵em(MZ)
↵s(MZ)

8b3 � 3b2 � 5b1
(14)

where
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corrections and higher loop e↵ects. In the MSSM, extra contributions from the higgsinos
and gauginos lead to prediction B = 0.714, remarkably close to the experimental value.
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to be compared with the prediction in the SM:

unaffected by universal 
contribution to the running

large (40%)  discrepancy! Cannot be accommodated by allowing a 10% theoretical 
uncertainty due to threshold corrections and higher loop effects.
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values unchanged when adding universal contributions to the running

Quarks and leptons of the SM contribute universally as they form complete 
SU(5) multiplets, hence do not affect the relative running and therefore B

We can finally derive the values of MGUT ↵GUTand 

We have three equations and two unknowns (↵GUT and MGUT ). Using

↵1 =
5

3

1

cos2 ✓W
↵em and ↵2 =

↵em

sin2 ✓W
(12)

we can derive the following consistency condition,

✏ijk(↵
�1
i � �i)(bj � bk) = 0 (13)

If the �i contributions are universal (�1 = �2 = �3) or negligible , this translates into
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where
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↵�1
2 � ↵�1

1 � (�2 � �1)
(17)
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�1
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s

sin2 ✓w↵�1
em � ↵�1

em

= 0.717 ± 0.008 ± 0.03 (18)

In the SM
BSM = 0.528 (19)

We can finally derive the values of MGUT and ↵GUT :

MGUT = MZ exp
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◆
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3b3↵s(MZ) � (5b1 + 3b2)↵em(MZ)

(8b3 � 3b2 � 5b1)↵s(MZ)↵em(MZ)
(21)

which are also unchanged when adding universal contributions to the running.
The ratio B is entirely determined by the experimental values of the gauge couplings and

can also be computed theoretically for the particle content of any model. Since it is a ratio
of di↵erences any constant or universal contributions to bi does not a↵ect this ratio. The
quarks and leptons of the SM contribute universally as they form complete SU(5) multiplets
and therefore do not a↵ect the relative running and hence the value of B. Only the Higgs
and SM gauge bosons can a↵ect the relative running. The SM prediction is B = 0.528, far
from the measured value, even if allowing a 10% theoretical uncertainty due to threshold
corrections and higher loop e↵ects. In the MSSM, extra contributions from the higgsinos
and gauginos lead to prediction B = 0.714, remarkably close to the experimental value.
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self-consistent calculation: MGUT < MPl

↵GUT ⌧ 1 perturbative
safe to neglect quantum gravity effects

-1
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Only the Higgs and the SM gauge bosons can affect the relative running (see slide 9)

In the MSSM, extra contributions from the higgsinos and gauginos lead to the prediction 
B=0.714 remarkably close to the experimental value

1 GUTs

1.1 Gauge coupling unification

The evolution of gauge couplings is controlled by the renormalization group equations

d↵(µ)

d log µ
⌘ �(↵(µ)) or equivalently

dg(µ)

d log µ
⌘ �(g(µ)) (1)

�(↵) =
g

2⇡
�(g) (2)

At one loop

�(↵) ⌘ d↵(µ)

d log µ
=

�b

2⇡
↵2 + O(↵3) (3)

or

�(g) ⌘ dg(µ)

d log µ
=

�b

16⇡2
g3 + O(g5) (4)

So couplings vary logarithmically as a function of the mass scale:

1

↵(µ)
=

1

↵(µ0)
+

b

2⇡
log

µ

µ0
(5)

and in particular

↵�1
i (MZ) = ↵�1

GUT � bi

4⇡
log

M2
GUT

M2
Z

+�i (6)

where we have added a �i term to account for threshold corrections from the GUT and
weak scales and the e↵ects of Planck suppressed operators and bi are defined by the particle
content as

b =
11

3
T2(spin-1) � 2

3
T2(chiral spin-1/2) � 1

3
T2(complex spin-0) (7)

Tr(T a(R)T b(R)) = T2(R)�ab T2(fund) =
1

2
T2(adj) = N (8)

So, in the SM:

b3 =
11

3
⇥ Nc � 2

3
⇥ Nf

✓
1

2
⇥ 2 +

1

2
⇥ 1 +

1

2
⇥ 1

◆
= 7 (9)

b2 =
11

3
⇥ 2 � 2

3
⇥ Nf

✓
1

2
⇥ 3 +

1

2
⇥ 1

◆
� 1

3
⇥ 1

2
=

19

6
(10)

bY = �2

3
⇥ Nf

✓
(
1

6
)2 ⇥ 2 ⇥ Nc + (

�2

3
)2 ⇥ Nc + (

1

3
)2 ⇥ Nc + (

�1

2
)2 ⇥ 2 + (1)2

◆

�1

3
(
1

2
)2 ⇥ 2 = �41

6
�! b1 = bY ⇥ 3

5
= �41

10
(11)
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4. In low-µ split SUSY, the two lightest neutralinos and the lightest chargino have

almost degenerate masses. Even the radiative corrections cannot lead to a mass dif-

ference more than one GeV between the lightest chargino and the lightest neutralino.

Therefore, the decay of the lightest chargino only produces very soft pions or leptons

in the final state, which may be too di�cult to detect at high energy colliders. In

split SUSY, the chargino and neutralino can give rise to interesting signals at hadron

and e+e� colliders [14, 15, 16]

Note that the present low-µ split SUSY scenario is rather similar to the focus-point

supersymmetry in the phenomenological aspects [17]. Recently, there have been works

exploiting the idea of minimal extensions of the SM to satisfy the dark matter and other

constraints [18, 19].

The organization of the paper is as follows. In the next section, we examine the

gauge coupling unification. In Sec. 3, we describe the mass spectrum of the neutralinos

and charginos. Section 4 deals with the couplings relevant to the studies of dark matter

and collider phenomenology. In Sec. 5, we discuss the dark matter relic density and the

direct and indirect detection. In Sec. 6, we study the phenomenology at hadron and e+e�

colliders. We conclude in Sec. 7.

2. Gauge Coupling Unification

The general form of the one-loop renormalization group equations for the gauge couplings

between any two mass scales MX and MY is given by

1

�i(M2
X)

=
1

�i(M2
Y )

� �i

4�
ln

✓
M2

X

M2
Y

◆
, (2.1)

where i = 1, 2, 3 are indices representing the U(1)Y , SU(2)L, and SU(3)C gauge couplings,

respectively. The di�erences among the SM, MSSM, ordinary split SUSY, and low-µ split

SUSY scenarios reside in the following values of the beta functions :

SM : (�)SM =

�

��
0

�22
3

�11

�

�� +

�

��

4
3
4
3
4
3

�

�� F +

�

��

1
10
1
6

0

�

�� NH ,

MSSM : (�)MSSM =

�

��
0

�6

�9

�

�� +

�

��
2

2

2

�

�� F +

�

��

3
10
1
2

0

�

�� NH ,

Split-SUSY : (�)split|<m̃ =

�

��
0

�6

�9

�

�� +

�

��

4
3
4
3
4
3

�

�� F +

�

��

5
10
5
6

0

�

�� ,

low-µ split SUSY : (�)µ�split|<m̃ =

�

��
0

�22/3

�11

�

�� +

�

��

4
3
4
3
4
3

�

�� F +

�

��

5
10
5
6

0

�

�� ,

– 3 –

Figure 2: values of b ⇥ (�1) in various models.
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Figure 3: One-loop evolution of gauge couplings in the SM (black), in SUSY (blue), in split-
SUSY (green) and in composite higgs and composite top models i.e. SM�(tR, H) (magenta).

Higgses into some complete SU(5) multiplets, and then somehow make the extra fields much
heavier than the doublet. However, this seems very di�cult: one needs to give a mass to
the extra fields that are 1014 times larger than the doublets. For example in the simplest
case the two Higgs doublets are embedded as Hu =2?5,Hd =2? ??5. In this case we had
to add an extra triplet and anti-tripletof SU(3), which have to be very heavy, while the
doublets from the same multiplet light. This is another naturalness problem that is specific
to SUSY GUTs. If the mass of the triplet was too low, the beta functions would change,
and unification of couplings would not occur.

Even if one can somehow arrange naturally for the triplets to be heavy (there are some
nice natural solutions to the doublet-triplet splitting problem), they still contribute to proton
decay at a rate that is usually too large. The reason is that due to supersymmetry and grand
unification the fermionic partners of heavy color triplet Higgses necessarily couple to the SM

3

Values of -b in various models:

light higgs, higgsino 
& gauginos but 

heavy sfermions

light higgs, higgsino  
but heavy sfermions 

& gauginos
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Another interesting observation:

In the SM, one can restore the gauge coupling 
unification without gauginos and higgsinos but if 

the third generation is partly composite!

The contribution from the partly composite third generation fermion sector restores the low 
energy prediction to a level that can be explained by threshold and higher loop effects

[Frigerio et al,
1103.2997]

[Agashe et al,
hep-ph/0502222]

If we substract H, tR and tR from the beta functions, B is 
approximately within 10% of the experimental value

c
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i i

Figure 1:

1 A

1

Figure 1: Diagrammatic representation of the leading-order contribution from the strong sector to the SM gauge
coupling running, parametrized in Eq. (6).

happens in theories with no intermediate scales, like the SM between the electroweak and the Planck

scale, or SU(3)C ⇥U(1)em above �QCD, where QCD is described by quarks and gluons.

Therefore, the contribution of the composite sector to the running of the gauge couplings �i ⇤
g2i /4⌅, as a function of the renormalization scale µ, can be written as

d

d lnµ

�
1

�i

⇥
⌅

bcomp
i

2⌅
, (6)

and can be visualized diagrammatically as in Fig. 1. In general, the relative values of the coe⇤-

cients bcomp
i cannot be computed perturbatively, nor the absolute size can be estimated in a model-

independent way. Still, it was shown by Polyakov that bcomp
i > 0 [15], and recent studies aim to put

lower bounds on these coe⇤cients, as a function of the dimension of the scalar operators of a generic

CFT [20]. These bounds could be of particular relevance for unification. Here we will assume that

bcomp
i is small enough for the SM gauge couplings not to hit a Landau pole before MGUT .7

The di⇥erential running, that is, the dependence on the scale µ of the quantities ⇤ij(µ) ⇤ 1/�i(µ)�
1/�j(µ), is a⇥ected at leading order by incomplete SU(5) representations, e.g., in the case of the SM,

the gauge bosons and the Higgs doublet. One knows, therefore, the amount of “SU(5) breaking”

that should be introduced with respect to the SM in order to achieve precision unification. Then, the

question is whether there are symmetries of the EWSB sector that allow to compute its contribution

to the di⇥erential running, independently from the strong dynamics.

A straightforward (perhaps, the only) possibility [14] is to assume that the EWSB sector has a

global symmetry G, which is a simple group containing GSM (therefore G can be SU(5) or a larger

simple group). In this case the EWSB sector does not contribute to ⇤ij at the one-loop level, because

bcomp
i = bcomp for i = 1, 2, 3. Besides, since the Higgs doublet H arises as a light composite state from

the G-symmetric sector, it does not contribute to the running. At most, it gives a small contribution

below �c, the scale where G is broken spontaneously to K, that may be non-simple. Similarly, all low

energy composite states may contribute to the di⇥erential running only below �c, as a sub-leading

threshold e⇥ect.

In particular, if some of the SM fields are composite, they do not contribute to the di⇥erential

running above �c, therefore it is convenient to denote with belemi the ⇥-function coe⇤cients of the

elementary SM fields only. Specifically, when H is part of the composite sector, the SM prediction

7 A warped extra-dimensional scenario yields bcomp
i = 2⇥/(�(5)

i k) � N , where k is the AdS curvature radius, �(5)
i

are the five-dimensional gauge couplings, and N is the number of colours of the dual conformal theory [19]. However,
the calculability in the warped extra-dimension requires a small ratio between the number of flavours and the number
of colours, F/N ⇥ 1, since this is the expansion parameter of the theory. Unfortunately, in the scenario discussed in
this paper, the number of flavours has to be large, due to the large global symmetry group G, while the absence of a
Landau pole requires bcomp

i �i(MGUT )/2⇥ � N�i(MGUT )/2⇥ ⇥ 1, posing an upper bound on N . Therefore we will not
rely on warped extra-dimension estimates nor on large-N arguments in this work.

8

i i

Aj

i i

�

Figure 1:

1 A

1

Figure 2: Example of sub-leading diagrams contributing to the di�erential running of the SM gauge couplings, on the
left with a loop of elementary gauge bosons, and on the right with a loop of elementary fermions.

RSM ⌅ 1.9 is modified by the subtraction of H, giving RSM�H = 2. The extra required correction

to achieve precise unification will be provided by the interactions between the elementary and the

composite fermions, as we now discuss.

The interactions of the elementary fields with the composite sector break explicitly G and thus

their e⇤ect on the di⇤erential running must be quantified. These are the SM gauge interactions of

composite operators, Eq. (3), as well as the fermion mixing terms, Eq. (4). The contribution of these

interactions to the running can be parametrized as [14]

d

d lnµ

�
1

�i

⇥
⇤

Bcomp
ij

2⌅

�j

4⌅
+

Ccomp
i⇥

2⌅

⇤2
⇥

16⌅2
, (7)

where j is summed over SM gauge bosons, and ⇧ over fermions. These are formally two-loop

contributions, as shown in Fig. 2, but with unknown coe⌅cients. Since they are not universal, and

not calculable a priori, they constitute an intrinsic theoretical uncertainty on unification in this

scenario.8 These non-leading corrections can be as large as the leading ones if the mixing with the

composite sector is large, as it is the case for the top quark.

2.2 Top compositeness and precision unification

Since the values of the SM gauge couplings gi are fixed by experiment, the only couplings between the

elementary and composite sectors that could modify significantly the running are the ⇤⇥’s which, in

the framework of partial-compositeness, are related to the Yukawa couplings as explained in section

1.1. Explicitly, below �c the couplings in Eq. (4) generate, e.g. for a right-handed fermion ⇧R, the

lagrangian

� L ⇤ (⇤⇥Rf)⇧R⇥L +M⇥R⇥R⇥L + h.c. , (8)

where ⇥ is a vector-like composite fermion (with the gauge quantum numbers of ⇧R) that arises as

an excitation of the operator O⇥R . By diagonalizing the associated mass matrix, the massless SM

fermion can be written as ⇧SM
R = cos ⇥⇥R ⇧R+sin ⇥⇥R ⇥R, with tan ⇥⇥R = ⇤⇥Rf/M⇥R . The fact that

M⇥R ⌅ g�f then leads to Eq. (5).

The ⇧R composite component becomes large when sin ⇥⇥R ⇥ 1, which requires a strongly coupled

elementary field, ⇤⇥R ⇥ g�. Then, the last term in Eq. (7) may become as large as a one-loop

8 Note that these two-loop contributions can be interpreted as threshold corrections associated with the ultraviolet
brane in the warped extra-dimension picture. They can be explicitly computed by integrating over the bulk, and they
are enhanced by the logarithm of the ultraviolet-infrared hierarchy.
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Figure 1: Diagrammatic representation of the leading-order contribution from the strong sector to the SM gauge
coupling running, parametrized in Eq. (6).

happens in theories with no intermediate scales, like the SM between the electroweak and the Planck

scale, or SU(3)C ⇥U(1)em above �QCD, where QCD is described by quarks and gluons.

Therefore, the contribution of the composite sector to the running of the gauge couplings �i ⇤
g2i /4⌅, as a function of the renormalization scale µ, can be written as

d

d lnµ

�
1

�i

⇥
⌅

bcomp
i

2⌅
, (6)

and can be visualized diagrammatically as in Fig. 1. In general, the relative values of the coe⇤-

cients bcomp
i cannot be computed perturbatively, nor the absolute size can be estimated in a model-

independent way. Still, it was shown by Polyakov that bcomp
i > 0 [15], and recent studies aim to put

lower bounds on these coe⇤cients, as a function of the dimension of the scalar operators of a generic

CFT [20]. These bounds could be of particular relevance for unification. Here we will assume that

bcomp
i is small enough for the SM gauge couplings not to hit a Landau pole before MGUT .7

The di⇥erential running, that is, the dependence on the scale µ of the quantities ⇤ij(µ) ⇤ 1/�i(µ)�
1/�j(µ), is a⇥ected at leading order by incomplete SU(5) representations, e.g., in the case of the SM,

the gauge bosons and the Higgs doublet. One knows, therefore, the amount of “SU(5) breaking”

that should be introduced with respect to the SM in order to achieve precision unification. Then, the

question is whether there are symmetries of the EWSB sector that allow to compute its contribution

to the di⇥erential running, independently from the strong dynamics.

A straightforward (perhaps, the only) possibility [14] is to assume that the EWSB sector has a

global symmetry G, which is a simple group containing GSM (therefore G can be SU(5) or a larger

simple group). In this case the EWSB sector does not contribute to ⇤ij at the one-loop level, because

bcomp
i = bcomp for i = 1, 2, 3. Besides, since the Higgs doublet H arises as a light composite state from

the G-symmetric sector, it does not contribute to the running. At most, it gives a small contribution

below �c, the scale where G is broken spontaneously to K, that may be non-simple. Similarly, all low

energy composite states may contribute to the di⇥erential running only below �c, as a sub-leading

threshold e⇥ect.

In particular, if some of the SM fields are composite, they do not contribute to the di⇥erential

running above �c, therefore it is convenient to denote with belemi the ⇥-function coe⇤cients of the

elementary SM fields only. Specifically, when H is part of the composite sector, the SM prediction

7 A warped extra-dimensional scenario yields bcomp
i = 2⇥/(�(5)

i k) � N , where k is the AdS curvature radius, �(5)
i

are the five-dimensional gauge couplings, and N is the number of colours of the dual conformal theory [19]. However,
the calculability in the warped extra-dimension requires a small ratio between the number of flavours and the number
of colours, F/N ⇥ 1, since this is the expansion parameter of the theory. Unfortunately, in the scenario discussed in
this paper, the number of flavours has to be large, due to the large global symmetry group G, while the absence of a
Landau pole requires bcomp

i �i(MGUT )/2⇥ � N�i(MGUT )/2⇥ ⇥ 1, posing an upper bound on N . Therefore we will not
rely on warped extra-dimension estimates nor on large-N arguments in this work.
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Figure 2: Example of sub-leading diagrams contributing to the di�erential running of the SM gauge couplings, on the
left with a loop of elementary gauge bosons, and on the right with a loop of elementary fermions.

RSM ⌅ 1.9 is modified by the subtraction of H, giving RSM�H = 2. The extra required correction

to achieve precise unification will be provided by the interactions between the elementary and the

composite fermions, as we now discuss.

The interactions of the elementary fields with the composite sector break explicitly G and thus

their e⇤ect on the di⇤erential running must be quantified. These are the SM gauge interactions of

composite operators, Eq. (3), as well as the fermion mixing terms, Eq. (4). The contribution of these

interactions to the running can be parametrized as [14]

d

d lnµ
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4⌅
+
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where j is summed over SM gauge bosons, and ⇧ over fermions. These are formally two-loop

contributions, as shown in Fig. 2, but with unknown coe⌅cients. Since they are not universal, and

not calculable a priori, they constitute an intrinsic theoretical uncertainty on unification in this

scenario.8 These non-leading corrections can be as large as the leading ones if the mixing with the

composite sector is large, as it is the case for the top quark.

2.2 Top compositeness and precision unification

Since the values of the SM gauge couplings gi are fixed by experiment, the only couplings between the

elementary and composite sectors that could modify significantly the running are the ⇤⇥’s which, in

the framework of partial-compositeness, are related to the Yukawa couplings as explained in section

1.1. Explicitly, below �c the couplings in Eq. (4) generate, e.g. for a right-handed fermion ⇧R, the

lagrangian

� L ⇤ (⇤⇥Rf)⇧R⇥L +M⇥R⇥R⇥L + h.c. , (8)

where ⇥ is a vector-like composite fermion (with the gauge quantum numbers of ⇧R) that arises as

an excitation of the operator O⇥R . By diagonalizing the associated mass matrix, the massless SM

fermion can be written as ⇧SM
R = cos ⇥⇥R ⇧R+sin ⇥⇥R ⇥R, with tan ⇥⇥R = ⇤⇥Rf/M⇥R . The fact that

M⇥R ⌅ g�f then leads to Eq. (5).

The ⇧R composite component becomes large when sin ⇥⇥R ⇥ 1, which requires a strongly coupled

elementary field, ⇤⇥R ⇥ g�. Then, the last term in Eq. (7) may become as large as a one-loop

8 Note that these two-loop contributions can be interpreted as threshold corrections associated with the ultraviolet
brane in the warped extra-dimension picture. They can be explicitly computed by integrating over the bulk, and they
are enhanced by the logarithm of the ultraviolet-infrared hierarchy.
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Figure 1: Diagrammatic representation of the leading-order contribution from the strong sector to the SM gauge
coupling running, parametrized in Eq. (6).
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scale, or SU(3)C ⇥U(1)em above �QCD, where QCD is described by quarks and gluons.
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independent way. Still, it was shown by Polyakov that bcomp
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lower bounds on these coe⇤cients, as a function of the dimension of the scalar operators of a generic

CFT [20]. These bounds could be of particular relevance for unification. Here we will assume that
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that should be introduced with respect to the SM in order to achieve precision unification. Then, the

question is whether there are symmetries of the EWSB sector that allow to compute its contribution

to the di⇥erential running, independently from the strong dynamics.

A straightforward (perhaps, the only) possibility [14] is to assume that the EWSB sector has a

global symmetry G, which is a simple group containing GSM (therefore G can be SU(5) or a larger

simple group). In this case the EWSB sector does not contribute to ⇤ij at the one-loop level, because
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i = bcomp for i = 1, 2, 3. Besides, since the Higgs doublet H arises as a light composite state from

the G-symmetric sector, it does not contribute to the running. At most, it gives a small contribution

below �c, the scale where G is broken spontaneously to K, that may be non-simple. Similarly, all low

energy composite states may contribute to the di⇥erential running only below �c, as a sub-leading

threshold e⇥ect.

In particular, if some of the SM fields are composite, they do not contribute to the di⇥erential

running above �c, therefore it is convenient to denote with belemi the ⇥-function coe⇤cients of the

elementary SM fields only. Specifically, when H is part of the composite sector, the SM prediction

7 A warped extra-dimensional scenario yields bcomp
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are the five-dimensional gauge couplings, and N is the number of colours of the dual conformal theory [19]. However,
the calculability in the warped extra-dimension requires a small ratio between the number of flavours and the number
of colours, F/N ⇥ 1, since this is the expansion parameter of the theory. Unfortunately, in the scenario discussed in
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Figure 2: Example of sub-leading diagrams contributing to the di�erential running of the SM gauge couplings, on the
left with a loop of elementary gauge bosons, and on the right with a loop of elementary fermions.

RSM ⌅ 1.9 is modified by the subtraction of H, giving RSM�H = 2. The extra required correction

to achieve precise unification will be provided by the interactions between the elementary and the

composite fermions, as we now discuss.

The interactions of the elementary fields with the composite sector break explicitly G and thus

their e⇤ect on the di⇤erential running must be quantified. These are the SM gauge interactions of

composite operators, Eq. (3), as well as the fermion mixing terms, Eq. (4). The contribution of these

interactions to the running can be parametrized as [14]
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where j is summed over SM gauge bosons, and ⇧ over fermions. These are formally two-loop

contributions, as shown in Fig. 2, but with unknown coe⌅cients. Since they are not universal, and

not calculable a priori, they constitute an intrinsic theoretical uncertainty on unification in this

scenario.8 These non-leading corrections can be as large as the leading ones if the mixing with the

composite sector is large, as it is the case for the top quark.

2.2 Top compositeness and precision unification

Since the values of the SM gauge couplings gi are fixed by experiment, the only couplings between the

elementary and composite sectors that could modify significantly the running are the ⇤⇥’s which, in

the framework of partial-compositeness, are related to the Yukawa couplings as explained in section

1.1. Explicitly, below �c the couplings in Eq. (4) generate, e.g. for a right-handed fermion ⇧R, the

lagrangian

� L ⇤ (⇤⇥Rf)⇧R⇥L +M⇥R⇥R⇥L + h.c. , (8)

where ⇥ is a vector-like composite fermion (with the gauge quantum numbers of ⇧R) that arises as

an excitation of the operator O⇥R . By diagonalizing the associated mass matrix, the massless SM

fermion can be written as ⇧SM
R = cos ⇥⇥R ⇧R+sin ⇥⇥R ⇥R, with tan ⇥⇥R = ⇤⇥Rf/M⇥R . The fact that

M⇥R ⌅ g�f then leads to Eq. (5).

The ⇧R composite component becomes large when sin ⇥⇥R ⇥ 1, which requires a strongly coupled

elementary field, ⇤⇥R ⇥ g�. Then, the last term in Eq. (7) may become as large as a one-loop

8 Note that these two-loop contributions can be interpreted as threshold corrections associated with the ultraviolet
brane in the warped extra-dimension picture. They can be explicitly computed by integrating over the bulk, and they
are enhanced by the logarithm of the ultraviolet-infrared hierarchy.
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A very interesting observation is that there exist another way to achieve beautiful uni-
fication: In the SM, one can restore the gauge coupling unification without gauginos and
higgsinos but if the third generation is partly composite! The value of B is approximately
within 10% of the experimental value while the SM prediction leads to a 40% discrepancy.
Remarkably the contribution from the partly composite third generation fermion sector has
restored the low energy prediction to a level that can be realistically by threshold and higher
loop e↵ects

split susy: everybody heavy except higgs,higgsino and gaugino.

Figure 1: comparison

1.2 Proton decay

Baryon number is violated via the exchange of GUT gauge bosons with GUT scale mass
resulting in dimension 6 operators suppressed by 1/M2

GUT . The proton lifetime is given by

⌧(p ! ⇡0e
+) ⇡

✓
MGUT

1016

◆4 ✓
1/35

(↵GUT

◆2

⇥ 4.4 ⇥ 1034 yr (22)

The dominant decay mode is p ! e+⇡0. Experimental constraints lead to

⌧p > 5.3 ⇥ 1033 yr (23)

leading to

MGUT >

✓
↵GUT

1/35

◆1/2

⇥ 6 ⇥ 1015 GeV (24)

The region satisfying this bound is shown in light red in Fig. 4-b. naively, the situation
looks safer in susy. However, this is because we have imposed an extra symmetry to prevent
dangerous contributions coming from dimension-5 and dimension 4 operators! SUSY pbs:

The SM matter fields fall into complete SU(5) multiplets, however the two Higgs doublets
of the MSSM do not. Thus if one takes the GUT idea seriously one needs to embed the

2
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4. In low-µ split SUSY, the two lightest neutralinos and the lightest chargino have

almost degenerate masses. Even the radiative corrections cannot lead to a mass dif-

ference more than one GeV between the lightest chargino and the lightest neutralino.

Therefore, the decay of the lightest chargino only produces very soft pions or leptons

in the final state, which may be too di�cult to detect at high energy colliders. In

split SUSY, the chargino and neutralino can give rise to interesting signals at hadron

and e+e� colliders [14, 15, 16]

Note that the present low-µ split SUSY scenario is rather similar to the focus-point

supersymmetry in the phenomenological aspects [17]. Recently, there have been works

exploiting the idea of minimal extensions of the SM to satisfy the dark matter and other

constraints [18, 19].

The organization of the paper is as follows. In the next section, we examine the

gauge coupling unification. In Sec. 3, we describe the mass spectrum of the neutralinos

and charginos. Section 4 deals with the couplings relevant to the studies of dark matter

and collider phenomenology. In Sec. 5, we discuss the dark matter relic density and the

direct and indirect detection. In Sec. 6, we study the phenomenology at hadron and e+e�

colliders. We conclude in Sec. 7.

2. Gauge Coupling Unification

The general form of the one-loop renormalization group equations for the gauge couplings

between any two mass scales MX and MY is given by

1
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where i = 1, 2, 3 are indices representing the U(1)Y , SU(2)L, and SU(3)C gauge couplings,

respectively. The di�erences among the SM, MSSM, ordinary split SUSY, and low-µ split

SUSY scenarios reside in the following values of the beta functions :
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Figure 2: values of b ⇥ (�1) in various models.
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Figure 3: One-loop evolution of gauge couplings in the SM (black), in SUSY (blue), in split-
SUSY (green) and in composite higgs and composite top models i.e. SM�(tR, H) (magenta).

Higgses into some complete SU(5) multiplets, and then somehow make the extra fields much
heavier than the doublet. However, this seems very di�cult: one needs to give a mass to
the extra fields that are 1014 times larger than the doublets. For example in the simplest
case the two Higgs doublets are embedded as Hu =2?5,Hd =2? ??5. In this case we had
to add an extra triplet and anti-tripletof SU(3), which have to be very heavy, while the
doublets from the same multiplet light. This is another naturalness problem that is specific
to SUSY GUTs. If the mass of the triplet was too low, the beta functions would change,
and unification of couplings would not occur.

Even if one can somehow arrange naturally for the triplets to be heavy (there are some
nice natural solutions to the doublet-triplet splitting problem), they still contribute to proton
decay at a rate that is usually too large. The reason is that due to supersymmetry and grand
unification the fermionic partners of heavy color triplet Higgses necessarily couple to the SM
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lifetime.
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2 Astrophysical probes of unification (susy guts)

Main idea: If DM is the LSP, then it can decay, like the proton, via dimension-6 operators
leading to a lifetime ⇠ (mDM/mp)5 shorter, of the order of 1026sec, which is the timescale
being probed by indirect detection experiments such as Fermi, pamela, Hess... the lifetime
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Proton decay

Baryon number is violated via the exchange of GUT gauge bosons with 
GUT scale mass resulting in dimension-6 operators suppressed by 1/M2

GUT

The proton lifetime is given by:

A very interesting observation is that there exist another way to achieve beautiful uni-
fication: In the SM, one can restore the gauge coupling unification without gauginos and
higgsinos but if the third generation is partly composite! The value of B is approximately
within 10% of the experimental value while the SM prediction leads to a 40% discrepancy.
Remarkably the contribution from the partly composite third generation fermion sector has
restored the low energy prediction to a level that can be realistically by threshold and higher
loop e↵ects

split susy: everybody heavy except higgs,higgsino and gaugino.

Figure 1: comparison
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Figure 4: Left: Unification predictions for B and sin2 ✓W in SM, SUSY, composite models
compared with measured value (red). Right: Predictions of ↵GUT and MGUT for each model.
The light red colored region is the one allowed by experimental constraints on the proton
lifetime.

fermions and the scalar partners via a Yukawa coupling term.

1.3 Neutron antineutron oscillations

1.4 Yukawa coupling unification

1.5 Doublet triplet splitting

1.6 Collider tests of GUTs

2 Astrophysical probes of unification (susy guts)

Main idea: If DM is the LSP, then it can decay, like the proton, via dimension-6 operators
leading to a lifetime ⇠ (mDM/mp)5 shorter, of the order of 1026sec, which is the timescale
being probed by indirect detection experiments such as Fermi, pamela, Hess... the lifetime
from dim-6 operators is

⌧ ⇠ 8⇡
M4

GUT

m5
⇠ 3 ⇥ 1027s

✓
TeV

m

◆5 ✓
MGUT

2 ⇥ 1016GeV

◆4

(25)

The lifetime of a weak scale particle decaying via dim-5 operators leads to decay taking place
during BBN:

⌧ ⇠ 8⇡
M2

GUT

m3
⇠ 7 s

✓
TeV

m

◆5 ✓
MGUT

2 ⇥ 1016GeV

◆2

(26)

4

composite

SM

MSSM split
SUSY

allowed
 by proton decay

i.e

Naively, the situation looks safer in 
SUSY. However, this is because we 
have imposed an extra symmetry to 
prevent dangerous dimension-5 and 
dimension-4 operators leading to

pb in susy GUTs:

+ doublet-triplet splitting pb...

H~ H~
q~ q~

g,W,B~ ~~

q l

1 2

q q

The additional vertices used in this diagram must exist due to supersymmetry, as well as
the gaugino mass insertions since the gauginos have not been observed.

In extra dimensional theories an S1/Z2 orbifold structure with a Z2 × Z ′
2 reflection

structure could give a nice explanation for the absence of the light triplets. In order to
start building up an extra dimensional GUT, we take a 5D SU(5) gauge theory with the
minimal amount of supersymmetry N = 1 in 5D (meaning eight superchages) in the bulk.
Then by definition we need to have the 5D N = 1 vector superfields in the bulk, while for
the matter fields one can choose if they are brane fields or bulk fields. For now we will
choose the fermionic matter fields to be brane fields, while the Higgs fields to be bulk fields.
One of the two Z2 reflections will act exactly as in the case of gaugino mediation: its role
is simply to split the 4D N = 2 multiplets into a 4D N = 1 vector superfield which has a
zero mode, while the 4D N = 1 chiral superfield which does not have a zero mode:

A
λ λ

φ

µ

L R

+

−

In order to have a grand unified extra dimensional SUSY GUT, the Higgs doublets
will live in 5D chiral superfields in the 5 representation of SU(5), which correspond to a
4D N = 2 hypermultiplet. Since we have two Higgses in the MSSM, we will effectively
introduce four 4D chiral superfields in the 5 of SU(5):

H = (5, 5̄), H ′ = (5′, 5̄′). (3.44)

We will use the second Z2 reflection to break the SU(5) GUT symmetry down to the
SU(3)×SU(2)×U(1) of the MSSM. We will do this by picking the representation matrix

37
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Astrophysical probes of unification (SUSY GUTs)

The DM LSP can decay, like the proton, via dimension-6 operators, 
with a lifetime ~ (mDM /mp )5 shorter than the proton lifetime, of 
the order of 1026 sec, which is the timescale probed by indirect 

detection experiments such as Fermi, PAMELA, HESS...

guarantee that a particle remains exactly stable since global symmetries are generically broken in

fundamental theories. Just as the proton is long-lived but may ultimately decay, other particles,

for example the dark matter, may decay with long lifetimes. If a TeV mass dark matter particle

decays via GUT suppressed dimension 6 operators, its lifetime would be

⌧ ⇠ 8⇡
M4

GUT

m5
= 3⇥ 1027 s

✓
TeV

m

◆5 ✓
MGUT

2⇥ 1016 GeV

◆4

(1)

Similarly a long-lived particle decaying through dimension 5 GUT suppressed operators has a life-

time

⌧ ⇠ 8⇡
M2

GUT

m3
= 7 s

✓
TeV

m

◆3 ✓
MGUT

2⇥ 1016 GeV

◆2

(2)

Both of these timescales have potentially observable consequences. The dimension 6 decays cause

a small fraction of the dark matter to decay today, producing potentially observable high energy

cosmic rays. The dimension 5 decays happen during Big Bang Nucleosynthesis (BBN) and can leave

their imprint on the light element abundances. There is, of course, uncertainty in these predictions

for the lifetimes because the physics at the GUT scale is not known.

If the dark matter decays through dimension 6 GUT suppressed operators with a lifetime as

in Eqn. 1 it can produce high energy photons, electrons and positrons, antiprotons, or neutrinos.

Interestingly, the lifetime of order 1027 s leads to fluxes in the range that is being explored by a

variety of current experiments such as HESS, MAGIC, VERITAS, WHIPPLE, EGRET, WMAP,

HEAT, PAMELA, ATIC, PPB-BETS, SuperK, AMANDA, Frejus, and upcoming experiments such

as the Fermi (GLAST) gamma ray space telescope the Planck satellite, and IceCube, as shown in

Table I. This is an intriguing coincidence, presented in section 2, that may allow these experiments

to probe physics at the GUT scale, much as the decay of the proton and a study of its branching

ratios would. Possible hints for excesses in some of these experiments may have already started us

on such an exciting path.

GUT scale physics can also manifest itself in astrophysical observations by leaving its imprint

on the abundances of light elements created during BBN. For example neutrons from the decay of

a heavy particle create hot tracks in the surrounding plasma in which additional nucleosynthesis

occurs. In particular, these energetic neutrons impinge on nuclei and energize them, causing a

cascade of reactions. This most strongly a↵ects the abundances of the rare elements produced

during BBN, especially 6Li and 7Li and possibly 9Be.

4

[Arvanitaki et al, 
0812.2075]
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Regions excluded by Fermi and 
HESS + CTA projections

Similar results obtained for different channels. 
This is assuming 2-body decay but other decays can be deduced, 

from a combination of the two-body decays

γ-ray Constraints on Decaying Dark Matter 

[Cirelli et al,
1205.5283]
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The constraints from the Fermi isotropic gamma-ray  data exclude 
decaying dark matter with a lifetime shorter than 1026 to few 1027 

seconds, depending on its mass and the precise channel.

excluded 
by Fermi

excluded by 
bounds from 
proton decay
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MGUT = 2.10 15 GeV

Constraints on decaying dark matter due to 
dim-6 operators suppressed by the GUT scale
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The strong CP problem

Georg Raffelt, MPI Physics, Munich ISAPP, Heidelberg, 15 July 2011  

The CP Problem of Strong Interactions 

Real quark 
mass 

Phase from 
Yukawa coupling 
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variable 

Remove phase of mass term by chiral transformation of quark fields remove phase of mass term by chiral transformation of quarks
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The CP Problem of Strong Interactions 
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experimental limit:
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The CP Problem of Strong Interactions 

Real quark 
mass 

Phase from 
Yukawa coupling 

Angle 
variable 

Remove phase of mass term by chiral transformation of quark fields 

Why so small?

induces a sizeable 
electric dipole moment  

for the neutron
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The Peccei-Quinn (dynamical) solution

axions couple to QCD sector

Georg Raffelt, MPI Physics, Munich ISAPP, Heidelberg, 15 July 2011  

Dynamical Solution 
Peccei & Quinn 1977,  Wilczek 1978,  Weinberg 1978 

CP-symmetry  
dynamically 
restored 

Postulate new global axial U(1)PQ symmetry

spontaneously broken by �

Georg Raffelt, MPI Physics, Munich ISAPP, Heidelberg, 15 July 2011  

Simplest Invisible Axion: KSVZ Model 
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Simplest Invisible Axion: KSVZ Model 

New heavy colored quarks with coupling to       generate a a GG term�
~
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Simplest Invisible Axion: KSVZ Model 

invariant under
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Simplest Invisible Axion: KSVZ Model 
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Simplest Invisible Axion: KSVZ Model 

fa : free parameter
strong CP pb solved whatever the scale fa is

axion: 
Goldstone

⇥ is promoted to a field a(x)

Peccei & Quinn calculated the axion potential 
and showed that at the minimum <a>=0 thus ⇥̄ = 0
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Axion properties

axions couple to gluons, 
mix with pions and therefore couple to photons

can be detected when they convert into 
photons due to magnetic field

leads to processes with neutrinoless double beta-decays: nn ! ppee. Thus, observing experimentally
this process is of great importance for understanding the nature of the neutrino masses.

4 The strong CP-problem and axions
In the SM Lagrangian of Eq. (3) we did not include the dimension-4 operator ✏µ⌫⇢�Ga

µ⌫G
a
⇢� made of

gluon fields7. Following the usual convention in the literature, let us introduce it as

✓

32⇡2

Z
d4x✏µ⌫⇢�Ga

µ⌫G
a
⇢� . (18)

This term violates the CP symmetry and induces a sizeable electric dipole moment (EDM) for the neu-
tron. Experimental limits on the neutron EDM put a limit on the coefficient ✓:

✓ . 10

�10 . (19)

The smallness of this coefficient requires an explanation. A possible one was proposed long ago by
Peccei and Quinn [9]. They promoted ✓ to a field a(x), the axion field, assumed to be a Goldstone boson
arising from the spontaneous breaking of a U(1) symmetry, the PQ symmetry. If this symmetry had a
U(1)SU(3)

2
c-anomaly, then the only non-derivative interaction of the axion would be given by the term

of Eq. (18) with the replacement ✓ ! a(x)/fA, where fA is a dimensionful parameter called the axion
decay-constant. In this model the value of ✓ is dynamical and must be calculated by minimizing the
axion potential. One obtains V (a) =

1
2m2

Aa(x)

2
+ · · · and then, ha(x)i = 0 ) ✓ = 0, in agreement

with Eq. (19).
The Peccei–Quinn mechanism has a testable prediction [10]. The model predicts the existence of

a new particle, the axion, whose mass can be calculated. In the limit fA � f⇡, we have

mA =

f⇡

fA

p
mumd

mu + md
m⇡ . (20)

The axion mass ranges from 100 keV to 10

�12 eV, as the unknown parameter fA varies from 100 GeV to
10

19 GeV. Axions couple to gluons through Eq. (18) with ✓ ! a(x)/fA, so the larger fA, the smaller are
their couplings to SM states. Detecting the axion would be an excellent way to prove the Peccei-Quinn
idea. Since the proposal of this mechanism, experimentalists have been searching in vain for the axion.
Today the values of fA (or equivalently of mA) are strongly constrained, as shown in Fig. 7.

The axion field is a possible dark matter candidate if fA lies around 10

12 GeV. The ADMX exper-
iment is looking for dark matter axions coming from the halo of the galaxy. Since the axion couples to
gluons, it mixes with the pions, and since these latter couple to photons, the axions also, generically, cou-
ple to photons. Then axions can scatter off a magnetic field and resonantly be converted into microwave
photons. The present searches at ADMX are aiming axions with fA between 10

11 GeV and 10

13 GeV
as shown in Fig. 7.

5 The hierarchy problem
In the SM the electroweak symmetry is triggered by the Higgs VEV. For positive values of µ2, the Higgs
VEV is given by v2

= µ2/�. Therefore we must have µ2
= �v2 ⇠ 6 ⇥ 10

4� GeV2. As compared
with the other dimensionful scale of the SM, the Planck scale, M2

P ⇠ 10

38 GeV2, the value of µ2 looks
extremely small. Why are they so different? This is the so-called hierarchy problem.

To make it worse, one can realize that the Higgs mass is, at the quantum level, very sensitive to the
mass of heavy states to which the Higgs couples. For example, in the SU(5) GUT discussed above, the

7Also the same operator but made of Wµ could be present. The impact of this term, however, on physical observables is
negligible.

11
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Dynamical Solution 
Peccei & Quinn 1977,  Wilczek 1978,  Weinberg 1978 

CP-symmetry  
dynamically 
restored 

thermally produced in stars:
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Experimental Tests of Invisible Axions 
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Axion field homogeneous on these scales 
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Primakoff effect: 
 

Axion-photon transition in external 
static E or B field 
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Axion Physics in a Nut Shell 

CP conservation in QCD by 

Peccei-Quinn mechanism 

For  fa ≫ f   axions  are  “invisible” 

and very light 

  Axions  a ~ 0 

       m f     mafa 
a 

Particle-Physics Motivation 

 Axions thermally produced in stars, 

 e.g. by Primakoff production 

• Limits from avoiding excessive 

   energy drain 

• Solar axion searches (CAST, Sumico)  

a 

Solar and Stellar Axions 

 In spite of small mass, axions are born 

 non-relativistically 

 (non-thermal relics) 

 Cold dark matter 

 candidate  

 ma ~ 10 eV or even smaller 

Cosmology Search for Axion Dark Matter 
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Axion as Dark Matter

U(1)PQ phase transition in the early universe: the axion field sits at a~    fa

where ρstar is the stellar density and one integrates the interaction rate |v|σ weighted by the axion energy over the
density of the initial states. For ma ! Tstar ∼ O(KeV ), the only dependence on ma are through the dependence
of the interaction rate on f : |v|σ ∼ f−2 ∼ m2

a. Bounds are then obtained by requiring that Q ≤ Qnucl–the rate of
nuclear energy generation (Qnucl ∼ 102 ergs/g sec).

From a detailed and careful study of how axion emission would affect stellar evolution, Raffelt [22] gives the following
bounds on the two classes of invisible axions

(ma)DFSZ ≤
10−2

X2
eV ; (ma)KSVZ ≤

0.27

Kaγγ
eV . (71)

Stronger bounds than these can be derived from the observation of neutrinos from SN 1987a. The bounds arise
because if the axion luminosity is comparable to the neutrino luminosity (∼ 1053 ergs/sec) during the core collapse,
then the neutrino signal would be altered. It turns out that the dominant process for axion production during the
collapse is axion bremstrahlung off nucleons (N + N → N + N + a). As a result the SN 1987a bounds one obtains
are quite similar for KSVZ and DFSZ axions. The results that Turner [23] gives from his study of this issue are

(ma)DFSZ ≤
1.7 × 10−3

ξ2brem

eV ;

(ma)KSVZ ≤ 8.4 × 10−4 eV (72)

where

ξ2brem = 1.44 +
1

2
(X1 − X2 − 1.55)2 . (73)

Cosmology, on the other hand, provides an upper bound for f (f̃) or, equivalently, a lower bound for the axion mass.
This bound was derived by a number of authors [24] and its origin is easy to understand. When the Universe goes
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then the neutrino signal would be altered. It turns out that the dominant process for axion production during the
collapse is axion bremstrahlung off nucleons (N + N → N + N + a). As a result the SN 1987a bounds one obtains
are quite similar for KSVZ and DFSZ axions. The results that Turner [23] gives from his study of this issue are

(ma)DFSZ ≤
1.7 × 10−3

ξ2brem

eV ;

(ma)KSVZ ≤ 8.4 × 10−4 eV (72)

where

ξ2brem = 1.44 +
1

2
(X1 − X2 − 1.55)2 . (73)

Cosmology, on the other hand, provides an upper bound for f (f̃) or, equivalently, a lower bound for the axion mass.
This bound was derived by a number of authors [24] and its origin is easy to understand. When the Universe goes
through the U(1)PQ phase transition, at temperatures of order T ∼ f , the axion field acquires a vacuum expectation.
At this stage the color anomaly is not effective, so the axion is a Nambu-Goldstone boson and 〈aphys.〉 ∼ f . As the
Universe cools to a temperature T ∗ ∼ ΛQCD, the axion gets a mass of order ma ∼ Λ2

QCD/f and the axion VEV is

driven to zero dynamically 〈aphys.〉 → 0, corresponding to θ̄ = 0. The relaxation of 〈aphys.〉 to this value is oscillatory
and this coherent oscillation of the zero-momentum component of the axion field contributes to the Universe’s energy
density. The larger f is, the larger the axion contribution to the energy density of the Universe is. Asking that this
contribution not exceed the Universe’s closure density then gives an upper bound on f :

A little more quantitatively [4], one can examine the equation of motion for 〈aphys.〉 in the expanding Universe in
the approximation that only the axion mass term is relevant in the axion potential:

d2〈aphys.〉
dt2

+ 3
Ṙ(t)

R(t)

d〈aphys.〉
dt

+ m2
a(t)〈aphys.〉 = 0 , (74)

where R(t) is the cosmic scale parameter and Ṙ(t)/R(t) = H(t) is the Hubble constant. If H(t) ) ma(t) then there
are no oscillations, while in the reverse limit the oscillations are sinusoidal. Oscillations start at T ∗, when

ma(T ∗) ∼ H(T ∗) ∼
Λ2

QCD

MPlanck
. (75)

At the start of oscillations, the energy density in the axion field is of order ρa(T ∗) ∼ m2
a(T ∗)f2. If one assumes that

ma(t) is slowly varying then one can show that [24] ρa(t) ∼ ma(t)/R3(t). Thus the contribution of axion oscillations
to the Universe energy density today is of order

ρa = ρa(T ∗)

[

ma

ma(T ∗)

] [

R3(T ∗)

R3

]

∼
Λ3

QCDT 3

maMPlanck
, (76)

where T ∼ 3◦K is the temperature of the Universe today. Requiring that ρa be less than the closure density of the
Universe provides the lower bound on ma. Amazingly, the above order of magnitude formula gives the same bounds
on ma that the more careful calculations give [4]

ma ≥ (10−5 − 10−6) eV . (77)

11

bound on the axion mass not 
to overclose the universe:

⇥
(flat potential)

redshifts like cold dark matter

⇢DM ⇠ 0.3 GeV cm�3 =
1

2
m2

a⇥
2f2
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2
⇥2m2
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Georg Raffelt, MPI Physics, Munich ISAPP, Heidelberg, 15 July 2011  
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Unificaxion [Giudice et al,
1204.5465]

Give up on the hierarchy problem. 
Focus on dark matter, gauge coupling unification and strong CP problem

-> no new physics at the weak scale

Solution to strong CP pb: postulate new U(1)PQ symmetry & new heavy fermions 

11 

Invisible (KSVZ) axion 

such that Ψ mass term fobidden, 
Yukawa coupling allowed 

such that Ψ mass 
and axion 

Initial misalignment mechanism gives DM: 

Preferred value fa ~ 1012 GeV, ma ~ µeV, 
or larger fa, if a* << fa  
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11 

Invisible (KSVZ) axion 

such that Ψ mass term fobidden, 
Yukawa coupling allowed 

such that Ψ mass 
and axion 

Initial misalignment mechanism gives DM: 

Preferred value fa ~ 1012 GeV, ma ~ µeV, 
or larger fa, if a* << fa  -> get a bound on the axion-photon coupling from requiring unification

These new fermions affect the running
as well as modify the axion-photon coupling
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Where is the prediction? 
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Figure 4: Left: The prediction of each unified model for ↵GUT and for E/N , the coe�cient

entering the axion coupling. The colors indicate the unified mass MGUT. The thick dots are

the points identified in fig. 2 as suggested by gauge/gravity unification, see eq. (6). Right:

The same points expressed in terms of the intermediate scale M , with colors indicating

the value of ↵GUT. For guidance, we have also translated the intermediate mass M into

the corresponding value of the axion mass ma, under the assumption M = fa.

This could not occur in a supersymmetric theory where, in the presence of just one scalar,

holomorphy implies QPQ = 1. In a non-supersymmetric theory the assumption QPQ = 1

can be justified by assuming that all fermions  sit in the same multiplet within a more

fundamental description, but we will not try to construct explicit examples. It is also worth

remarking that, under the assumption QPQ = 1, the relation between the axion coupling

and the �-function coe�cients is preserved, regardless of the dynamics of the PQ breaking

sector and, in particular, regardless of the number and PQ charges of the SM singlets in

that sector.

Equations (13) and (14) provide the link between unification and axion phenomenol-

ogy, which is the key feature of unificaxion. Gauge coupling unification selects a special

range for �bi which, in turn, determines the measurable quantity ga��/ma. The prediction

for ga��/ma is obtained only by the request of unification, with no need to specify the

particular particle content of the model or their interactions. Fig. 4 shows the correlations

between E/N , MGUT, ↵GUT, and M . In particular, fig. 4b illustrates how the prediction of

unificaxion for E/N , which is directly related to ga��/ma through eq. (13), depends on the

11

[Giudice et al,
1204.5465]
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observational
 facts unexplained 

by the SM

✔ The dark matter problem

✔ The matter antimatter asymmetry problem
{

Note: The number of generations may also be determined by the 
anomaly cancellation conditions ... in extra-dimensional theories, 

see e.g [Dobrescu & Popppitz hep-ph/0102010]

✔The hierarchy problem associated with the Higgs

✔The strong CP problem

✔The “why so” puzzles
gauge coupling unification

fermion mass hierarchy
proton stability

charge quantization

why 3 generations

The  SUSY solution
The  extra dimensional solutions

✔The  Flavour problem

The 4D strongly interacting solutionsfine-tuning 
problems{ [R. Rattazzi]

[D. Kazakov]

[G. Isidori]

⇝ ) GUTs ✔

✔


