The Combined Effects for PXR

at Channeling

K.B. Korotchenko ${ }^{1}$, Yu.L. Pivovarov ${ }^{1}$,

Y. Takabayashi ${ }^{2}$, T.A. Tukhfatullin ${ }^{1}$
${ }^{1}$ Tomsk Polytechnic University,Tomsk, Russia
${ }^{2}$ Saga Light Sourse, Japan

> Combined effects for PXR: PXRC and DCR

> PXRC: PXR from channeled electrons (positrons) - arises as very special kind of DCR (diffracted channeling radiation).
> PXRC: quantum effect connected with "transverse" form-factor of channeled electron (positron) \rightarrow modification (quantum correction) of angular distribution of emitted X-ray photons compared to ordinary PXR.
> PXRC: orientation dependence on angle of incidence into a crystal (relative to the channeling planes)
> PXRC: dependence on initial beam energy (number of quantum sub-barrier channeled states)
$>$ SAGA-LS: first experiment devoted to PXRC observation

The formation of DCR

- Emission of virtual CR-photon by channeled electron (positron) due to spontaneous transition $i \rightarrow f$
- Virtual CR-photon Bragg diffraction on the crystallographic planes
- Virtual CR-photon transformation into a real photon

The Feynman diagram for DCR in a first order in α (fine-structure constant) and diagram of diffraction.

RRGESOMI

Scheme of the DCR formation at axial channeling

Cross-section of the DCR

$$
d \sigma=\frac{2 \pi}{\hbar}\left|M_{i f}\right|^{2} \delta\left(\hbar \omega-\left(E_{i}-E_{f}\right)\right) d \rho_{f}
$$

$M_{i f}$ is the DCR matrix element,

$$
\begin{gathered}
M_{i f}=-e\left\langle\Psi_{f}(\vec{r})\right| \vec{A}^{*}(\vec{r}) \vec{\alpha}\left|\Psi_{i}(\vec{r})\right\rangle \\
\vec{A}(\vec{r})=\sum_{\kappa}\left(\vec{A}_{o \kappa} \exp (\mathbf{i} \vec{k} \vec{r})+\sum_{g \neq 0} \vec{A}_{g \kappa} \exp [\mathbf{i}(\vec{\kappa}+\vec{g}) \vec{r}]\right), \\
M_{i f}^{(-g) r}=-e C_{i f}\left(C_{i}+C_{f}\right) \vec{\varepsilon}_{g r} \vec{I}_{i f} / 2 m c, \\
\vec{I}_{i f}= \\
\left.(2 \pi / L)^{N} A_{g \kappa}^{\tau_{\kappa}^{*}}\left\langle\varphi_{f}\left(\vec{r}_{\perp}\right)\right| \hat{\vec{p}}\left|\varphi_{i}\left(\vec{r}_{\perp}\right)\right| \operatorname{Exp}\left(-\mathbf{i} \vec{\kappa}_{-g \perp} \vec{r}_{\perp}\right)\right\rangle_{\perp} \\
\times \delta\left(\Delta \vec{p}_{i f \|} / \hbar-\vec{\kappa}_{-g \|}\right), \\
C_{i f}= \\
C_{i}=c^{2} m\left(E_{i}+c^{2} m / E_{f} \sqrt{1+c^{2} m / E_{i}},\right.
\end{gathered}
$$ (the Bloch function)

$M_{i f}^{(-g) \tau}$ is the DCR matrix element
$\vec{\varepsilon}_{g 7}$ is the polarization vector
\vec{g} is the reciprocal lattice vector
($N=1$ for the case of axial channeling and $N=2$ for the case of planar channeling)

DCR matrix element

At the channeling condition $E_{\|} \gg U\left(r_{\perp}\right) \quad E_{\| \|} \cong E_{\| f}$.

DCR matrix element

$$
\begin{aligned}
\left.\sqrt{2(1+}+W_{\tau}^{2}\right) & M_{i f}^{(-g) \tau}= \\
& =-C_{i f} C_{i}(2 \pi / L)^{N} \frac{e}{m c} A_{i \sigma}^{\tau}\left(\vec{\varepsilon}_{g \tau \|} \vec{p}_{i \|} F_{i f}-\mathbf{i} m \gamma \Omega_{i f} \vec{\varepsilon}_{g r \mid} \vec{\Delta}_{i f}\right) \\
& \times \delta\left(\Delta \vec{p}_{i f \|} / \hbar-\vec{\kappa}_{-s\| \|}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \vec{\Delta}_{i f}=\left\langle\varphi_{f}\left(\vec{r}_{\perp}\right)\right| \vec{r}_{\perp} \exp \left(-\mathbf{i} \overrightarrow{\boldsymbol{K}}_{-8 \perp} \vec{r}_{\perp}\right)\left|\varphi_{i}\left(\vec{r}_{\perp}\right)\right\rangle_{\perp}, \\
& F_{i f}=\left\langle\varphi_{f}\left(\vec{r}_{\perp}\right) \exp \left(-\mathbf{i} \vec{\kappa}_{-8 \perp} \vec{r}_{\perp}\right) \mid \varphi_{i}\left(\vec{r}_{\perp}\right)\right\rangle_{\perp}, \\
& \Omega_{i f}=\left(E_{i \perp}-E_{f \perp}\right) / \hbar .
\end{aligned}
$$

DCR matrix element spontaneous intraband transition

Matrix element with $i=f$

$$
\begin{aligned}
\sqrt{2\left(1+W_{\tau}^{2}\right)} M_{i i}^{(-g) \tau}= & -C_{i i} C_{i}(2 \pi / L)^{N} \frac{e}{m c} A_{0 \kappa}^{\tau} \vec{\varepsilon}_{g \tau \|} \vec{p}_{i \|} F_{i i} \\
& \times \delta\left(\Delta p_{i \|} / \hbar-\vec{\kappa}_{-g\| \|}\right) .
\end{aligned}
$$

Angular distribution of this part of DCR

$$
\frac{d^{3} N}{d \theta_{x} d \theta_{y} d z}=\frac{\alpha \omega_{B}}{4 \pi c \sin ^{2} \theta_{B}} F_{i}^{2}\left[\frac{\theta_{x}^{2}}{4\left(1+W_{\pi}^{2}\right)}+\frac{\theta_{\theta}^{2}}{4\left(1+W_{\sigma}^{2}\right)}\right]
$$

In the well known formula for the angular distribution of PXR [1] "transverse" formfactor $F_{i i}$ is absence

PXRC is special case of DCR

 and its amplitude is always smaller than the amplitude of PXR $\left(F_{i i}<1\right)$
Angular distribution of the PXRC and PXR

 electron beam with energy 255 MeV at (220) Si channeling

Preliminary experimental results on PXRC

$255 \mathrm{MeV} e^{-} \rightarrow 20-\mu \mathrm{m}$-thick Si crystal

(220) planar channeling

The experimental data obtained at SAGA Light Source (Japan)

Preliminary experimental results on PXRC

$255 \mathrm{MeV} e^{-} \rightarrow 20-\mu \mathrm{m}$-thick Si crystal

Angular divergence of the electron beam

$$
w\left(k_{o}\right)=\operatorname{Exp}\left[-k_{o}^{2} / 2 \sigma^{2}\right],
$$

w is the probability that angle between channeling plane and the electron momentum equals $\theta_{0}=$ $k_{\mathrm{o}} \theta_{\mathrm{C}}$ (θ_{C} is critical channeling angle) σ is the dispersion in θ_{C} units

$$
\left.\frac{d^{3} N_{P X R C}}{d \theta_{x} d \theta_{y} d z}\right|_{\text {beam }}=\left\langle w\left(\theta_{o}\right) P\left(i, \theta_{o}\right) W_{P X R C}\left(i, \theta_{o}\right)\right\rangle_{\theta_{o}},
$$

$W_{\text {PXRC }}\left(i, \theta_{\mathrm{o}}\right)$ angular distribution of PXRC due to one electron,
$P\left(i, \theta_{\mathrm{o}}\right)$ is the initial population of the $i^{\text {th }}$ level for the electron incident at the angle θ_{0} to the channeling plane
$\langle\ldots\rangle_{\theta 0}$ - averaging over the angle θ_{0}
Only the part of the electrons are captured to the channeling regime (that is to the sub-barrier levels) and its involved to the generation PXRC the other electrons generate the general PXR

$$
\left.\frac{d^{3} N}{d \theta_{x} d \theta_{y} d z}\right|_{\text {beam }}=\left.\frac{d^{3} N_{P X R C}}{d \theta_{x} d \theta_{y} d z}\right|_{\text {beam }}+\left\langle w\left(\theta_{o}\right) W_{P X R}\left(1-P\left(i, \theta_{o}\right)\right\rangle_{\theta_{o}},\right.
$$

Angular distribution of the PXRC

electron beam with energy 255 MeV at (220) Si channeling

Angular distribution of the PXRC

electron beam with energy 255 MeV at (220) Si channeling

Conclusions

- Preliminary experimental results (SAGA-LS Linac) on angular distributions of PXR from channeling electrons with energy 255 MeV show small deviations from ordinary PXR angular distribution
- Probably, the deviations are explained by manifestation of the new Combined effect for PXR at channeling, i.e. by PXRC: quantum effect connected with "transverse" form-factor of channeled electron (positron) which leads to modification (quantum correction) of angular distribution of emitted X-ray photons compared to ordinary PXR.
- Further experiments at SAGA-LS are planned using thinner crystal and changing electron beam energy

Thank you for attention

RREQSOM

Two-dimensional X-ray detector

Imaging plate [BaFX:Eu2+ $(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$]

- Reusable
- Digitally readable
- Size: $20 \times 20 \mathrm{~cm}$
- Nominal position resolution: $50 \mu \mathrm{~m}$

Imaging plate reader [FUJIFILM BAS-2500]

Imaging plate eraser

