The top forward-backward asymmetry

Werner Vogelsang Univ. Tübingen

FPCP, Maale Hachamisha, 24.03.2011

Outline:

- Basics of A_{FB}
- Standard Model predictions
- Beyond SM ideas
- Conclusions

Basics of A_{FB}

Charge asymmetry:

Differential in rapidity
$$y$$
:

$$A_{\rm ch}(y) = \frac{N_t(y) - N_{\bar{t}}(y)}{N_t(y) + N_{\bar{t}}(y)}$$

Integrated:
$$A_{\mathrm{ch}} = \frac{N_t(y>0) - N_{\bar{t}}(y>0)}{N_t(y>0) + N_{\bar{t}}(y>0)}$$

in $par{p}$:

charge asymmetry leads to forward-backward asym.:

$$A_{\text{FB}} = \frac{N_t(y > 0) - N_t(y < 0)}{N_t(y > 0) + N_t(y < 0)}$$

$$= A_{\text{ch}}$$

• also:
$$A_{ ext{FB}}^{tar{t}}=rac{N(\Delta y>0)-N(\Delta y<0)}{N(\Delta y>0)+N(\Delta y<0)}$$
 $\Delta y\equiv y_t-y_{ar{t}}$

Factorization:

$$y = \hat{y} + \frac{1}{2} \log \frac{x_1}{x_2}$$
 \bar{t}
 $y_t - y_{\bar{t}} = \hat{y}_t - \hat{y}_{\bar{t}}$

$$y_t - y_{\bar{t}} = \hat{y}_t - \hat{y}_{\bar{t}}$$

$$A_{\rm ch} = A_{\rm FB}$$

$$\propto \int dx_1 dx_2 \left[q_1^p \bar{q}_2^{\bar{p}} - \bar{q}_1^p q_2^{\bar{p}} \right] \left(\hat{\sigma}_{q\bar{q} \to t}(\hat{y}) - \hat{\sigma}_{q\bar{q} \to \bar{t}}(\hat{y}) \right)$$

$$q q - \bar{q} \bar{q}$$

- Less dilution for $\Delta y \equiv y_t y_{\bar{t}}$
- ullet Note, for pp: $A_{
 m FB} \equiv 0$, but can still define an $A_{
 m ch}$

Integrated asymmetries:

• DO: not corrected for acceptance or reconstruction

$$A_{\rm FB}^{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)} = (8 \pm 4 \,(\text{stat}) \pm 1 \,(\text{syst}))\%$$

SM expectation (MC@NLO): ~ 1%

CDF: fully corrected

$$A_{\text{FB}}^{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)} = \begin{cases} 0.158 \pm 0.075 & \ell + \text{jets} \\ 0.42 \pm 0.15 \pm 0.05 & 2\ell \end{cases}$$

SM expectation: ~ 6%

$$A_{\mathrm{FB}} = rac{N_t(y>0) - N_t(y<0)}{N_t(y>0) + N_t(y<0)} = 0.150 \pm 0.055$$
 SM expectation: ~ 4%

Standard Model predictions

• Tevatron: ~85% of $t\bar{t}$ cross section is from $q\bar{q}$

LO symmetric in $t, \, \bar{t} \, : \, \mathsf{no} \, \mathsf{A}_{\mathsf{ch}}$

• electroweak:

structure is: $A_{\rm FB} \propto (\hat s - M_Z^2)\,e_q\,e_t\,g_A^q\,g_A^t\,\cos\theta$ (no interference with QCD $qar q \to tar t$)

• however, at $\mathcal{O}(\alpha_s^3)$:

Brown, Sahdev, Mikaelian '79 Halzen, Hoyer, Kim '87 Kühn, Rodrigo '98 QED: Berends, Gaemers, Gastmans '73 Putzolu '61

ullet in QCD, effect involves color factor $d_{abc}\,d^{abc}$

• diagrams are subset of full NLO, and therefore also included there

Beenakker et al.,

Beenakker et al., Ellis,Dawson,Nason, MCFM (Campbell,Ellis,et al.) MC@NLO (Frixione et al.)

- however, for asymmetric part, they are LO
- as a result, loops are UV-finite
- diagrams also collinear-finite:

single IR divergence that cancels between real & virtual

Kühn, Rodrigo

$$\frac{d\sigma_A^{q\bar{q},virt+soft}}{d\cos\hat{\theta}} = \frac{\alpha_s^3}{2\hat{s}} \frac{d_{abc}^2}{16N_C^2} \beta \left\{ B(c) - B(-c) + (1+c^2+4m^2) \right\}$$

$$\times \left[4\log\left(\frac{1-c}{1+c}\right)\log(2w) + D(c) - D(-c) \right]$$

$$\beta = \sqrt{1-4m^2}, \quad c = \beta\cos\hat{\theta}, \quad w = E_{cut}^g / \sqrt{\hat{s}}$$

- $log(E_{cut}^g)$ cancels against 2->3 contributions
- nominally, 2->3 < 0 $$\operatorname{soft+virt}>0$, and larger } \right\} \ \Rightarrow \ A_{\mathrm{ch}}>0$

Integrated Δy asymmetry ~ 6%

Stability of this prediction?

Why (might need to) worry:

- only LO
- NLO gives ~30% correction to $\,t \bar{t}\,$ cross section, significant scale uncertainty
- NLO for *charge-asymmetric* part not available (would be part of NNLO for full cross sec.)
- recent findings for asymmetry in $~tar{t} + {
 m jet}$

ullet NLO computation of $\,tar t + {
m jet}\,$ production

Dittmaier, Uwer, Weinzierl '07 Melnikov, Schulze '10

• true NLO - also for charge-asymmetric piece!

Note, $A_{\rm FB} < 0$

Dittmaier, Uwer, Weinzierl

Melnikov, Schulze

Why so different?

- $t\bar{t} + \mathrm{jet}$ is different observable
- LO: Only real-emission diagrams

Recall,
$$\sim \alpha_s^3 \log(E_{\rm cut}^g) \sim \alpha_s^3 \log(p_{\perp}^{\rm jet}) < 0$$

• denominator of
$${\sf A_{FB}}$$
: $\sim \alpha_s \log^2(p_\perp^{\rm jet}) \, \sigma_{q ar q \to t ar t}$ soft+coll.

NLO for asymmetric part: double-logs arise

$$\alpha_s \log^2(p_\perp^{\rm jet}) A_{\rm FB}^{\rm incl.} \sigma_{q\bar{q}\to t\bar{t}} \sim \alpha_s^4 \log^2(p_\perp^{\rm jet}) > 0$$

• therefore:

$$A_{\rm FB}^{t\bar{t}+{
m jet}} \sim \frac{-C\,\alpha_s^3\,\log(p_\perp^{
m jet})\,+\,\alpha_s\log^2(p_\perp^{
m jet})\,A_{\rm FB}^{
m incl.}\,\sigma_{q\bar{q}\to t\bar{t}}}{\sigma_{t\bar{t}+{
m jet}}}$$

- beyond that no reason for "new effects"
- inclusive observables: $\log(E_{\mathrm{cut}}^g)$ cancel order-by-order: expect much more stability

Still: how stable is inclusive asymmetry?

Almeida, Sterman, WV Ahrens, Neubert et al.

- investigate higher orders of perturbation theory
- for simplicity, consider Drell-Yan first:

LO:
$$\hat{s} \left\{ \begin{array}{c} q \\ \bar{q} \end{array} \right. \gamma^*$$

$$z \equiv \frac{M_{\ell\ell}^2}{\hat{s}} = 1$$
 $\frac{d\sigma_{q\bar{q}}^{\rm LO}}{dM_{\ell\ell}} \sim \delta(1-z)$

NLO correction:

$$z \rightarrow 1$$
:

$$\frac{d\sigma_{q\bar{q}}^{\rm NLO}}{dM_{\ell\ell}} \sim \alpha_s \left(\frac{\log(1-z)}{1-z}\right)_+ + \dots$$

· higher orders:

$$\frac{d\sigma_{q\bar{q}}^{N^{k}LO}}{dM_{\ell\ell}} \sim \alpha_s^k \left(\frac{\log^{2k-1}(1-z)}{1-z}\right)_{+} + \dots$$

"threshold logarithms"

• $z \rightarrow 1$: soft / collinear gluons

Large logs resummed to all orders

- Sterman; Catani, Trentadue
- factorization of matrix elements
- and of phase space when integral transform is taken

$$\hat{\sigma}_{q\bar{q}} \propto \exp \left[2 \int_0^1 dy \, \frac{y^N - 1}{1 - y} \int_{\mu_F^2}^{Q^2 (1 - y)^2} \, \frac{dk_\perp^2}{k_\perp^2} \, A_q \left(\alpha_s(k_\perp^2) \right) + \dots \right]$$

$$A_q(\alpha_s) = C_F \left\{ \frac{\alpha_s}{\pi} + \left(\frac{\alpha_s}{\pi} \right)^2 \left[\frac{C_A}{2} \left(\frac{67}{18} - \zeta(2) \right) - \frac{5}{9} T_R n_f \right] \right\}$$

- contains all leading logs
- · does not depend on scattering angle

Application to heavy flavor production:

Kidonakis,Sterman Mitov,Sterman Beneke et al. Ahrens et al.

leads to 2x2 matrix problem

$$\sigma_{q\bar{q}}^{\rm res}(N,\theta) \propto \Delta_q(N) \Delta_{\bar{q}}(N) \, {\rm Tr} \left[H_{q\bar{q}}(\theta) \; {\rm e}^{-\int_{M_t\bar{t}}^{M_t\bar{t}}/N} \, \frac{d\mu}{\mu} \, \Gamma^\dagger(\alpha_s,\theta) \, S_{q\bar{q}} \; {\rm e}^{\int_{M_t\bar{t}}^{M_t\bar{t}}/N} \, \frac{d\mu}{\mu} \, \Gamma(\alpha_s,\theta) \, \right]$$
 like Drell-Yan

this part depends on scattering angle!

(next-to-leading log)

To good approximation:

Almeida, Sterman, WV

$$\hat{\sigma}_{q\bar{q}}^{(\text{res})}(N,\theta) = \hat{\sigma}_{q\bar{q}}^{(\text{Born})}(\theta) \left(\Delta_{q}(N)\right)^{2} \left\{ 1 + \frac{\beta \cos \theta(8C_{F} - 3C_{A}) \ln(1 - 2\lambda)}{\pi b_{0}} \right\} e^{-\frac{C_{A}}{2\pi b_{0}} \ln(1 - 2\lambda)}$$

$$\lambda = \alpha_{s} b_{0} \log(N)$$

leading-log part cancels in A_{FB}

- general trend is like CDF data, but less pronounced
- stability of results confirmed to NNLL for integrated asymmetry

 Ahrens, Ferroglia, Neubert,

Pecjak, Yang

Ideas beyond the SM

A lot of activity...

[6] A. Djouadi, G. Moreau, F. Richard, and R. K. Singh, Phys.Rev. **D82**, 071702 (2010), arXiv:0906.0604 [hepph]; M. Martynov and A. Smirnov, Mod.Phys.Lett. **A24**, 1897 (2009), arXiv:0906.4525 [hep-ph]; P. Ferrario and G. Rodrigo, Phys.Rev. **D80**, 051701 (2009). arXiv:0906.5541 [hep-ph]; S. Jung, H. Murayama, A. Pierce, and J. D. Wells, Phys.Rev. **D81**, 015004 (2010), arXiv:0907.4112 [hep-ph]; K. Cheung, W.-Y. Keung, and T.-C. Yuan, Phys.Lett. **B682**, 287 (2009). arXiv:0908.2589 [hep-ph]; J. Frampton, Paul H. and and K. Wang, Phys.Lett. **B683**, 294 (2010), arXiv:0911.2955 [hep-ph]: J. Shu, T. M. Tait, and K. Wang. Phys.Rev. **D81**, 034012 (2010), arXiv:0911.3237 [hep-A. Arhrib, R. Benbrik, and C.-H. Chen. Phys.Rev. **D82**, 034034 (2010), arXiv:0911.4875 [hepph]; I. Dorsner, S. Fajfer, J. F. Kamenik, and N. Kosnik, Phys.Rev. **D81**, 055009 (2010), arXiv:0912.0972 [hep-ph]: V. Barger, W.-Y. Keung, and C.-T. Yu. Phys.Rev. **D81**, 113009 (2010), arXiv:1002.1048 [hepph]: J. Cao, Z. Heng, L. Wu, and J. M. Yang, Phys.Rev. **D81**, 014016 (2010), arXiv:0912.1447 [hepph]; Q.-H. Cao, D. McKeen, J. L. Rosner, G. Shaughnessy, and C. E. Wagner, Phys.Rev. **D81**, 114004 (2010), arXiv:1003.3461 [hep-ph]; B. Xiao, Y.-k. Wang, and S.h. Zhu, Phys.Rev. **D82**, 034026 (2010), arXiv:1006.2510 [hep-ph]; M. Martynov and A. Smirnov, Mod. Phys. Lett. (2010), arXiv:1006.4246 [hep-ph]; R. Chivukula, E. H. Simmons, and C.-P. Yuan, Phys.Rev. **D82**, 094009 (2010), arXiv:1007.0260 [hep-ph]; G. Rodrigo and P. Ferrario, (2010), arXiv:1007.4328 [hep-ph]; M. Bauer, F. Goertz, U. Haisch, T. Pfoh, and S. Westhoff, JHEP **1011**, 039 (2010), arXiv:1008.0742 [hep-ph]; C. Zhang and S. Willenbrock, Phys.Rev. **D83**, 034006 (2011), arXiv:1008.3869 [hep-ph]; C.-H. Chen, G. Cvetic, and C. Kim, Phys.Lett. **B694**, 393 (2011), arXiv:1009.4165 [hep-ph]; B. Xiao, Y.-k. Wang, and S.-h. Zhu, (2010), arXiv:1011.0152 [hep-ph]; E. Alvarez, L. Da Rold, and A. Szynkman, (2010), arXiv:1011.6557 [hep-ph]; G. Burdman, L. de Lima, and R. D. Matheus, Phys.Rev. **D83**, 035012 (2011), arXiv:1011.6380 [hep-ph]; K. Cheung and T.-C. Yuan, (2011), arXiv:1101.1445 [hep-ph]; Y. Bai, J. L. Hewett, J. Kaplan, and T. G. Rizzo, JHEP 1103, 003 (2011), arXiv:1101.5203 [hep-ph]; J. Shelton and K. M. Zurek, (2011), arXiv:1101.5392 [hep-

ph]; V. Barger, W.-Y. Keung, and C.-T. Yu, (2011), arXiv:1102.0279 [hep-ph]; K. Blum, C. Delaunay, O. Gedalia, Y. Hochberg, S. J. Lee, et al., (2011), arXiv:1102.3133 [hep-ph]; B. Grinstein, A. L. Kagan, M. Trott, and J. Zupan, (2011), arXiv:1102.3374 [hepph]; K. M. Patel and P. Sharma, (2011), arXiv:1102.4736 A. R. Zerwekh, (2011), arXiv:1103.0956 [hep-ph]; C. Delaunay, O. Gedalia, Y. Hochberg, [hep-ph]; G. Perez, and Y. Soreq, (2011), arXiv:1103.2297 [hepph]; Z. Ligeti, M. Schmaltz, and G. M. Tavares, (2011), arXiv:1103.2757 [hep-ph]; A. L. Kagan, J. F. Kamenik, G. Perez, and S. Stone, (2011), arXiv:1103.3747 [hepph]; S. Jung, A. Pierce, and J. D. Wells, (2011), arXiv:1103.4835 [hep-ph]; M. R. Buckley, D. Hooper, J. Kopp, and E. Neil, (2011), arXiv:1103.6035 [hep-ph]; J. Shu, K. Wang, and G. Zhu, (2011), arXiv:1104.0083 [hep-ph]; A. Rajaraman, Z. Surujon, and T. M. Tait, (2011), arXiv:1104.0947 [hep-ph]; J. Aguilar-Saavedra and M. Perez-Victoria, (2011), arXiv:1104.1385 [hepph]; C.-H. Chen, S. S. Law, and R.-H. Li, (2011), arXiv:1104.1497 [hep-ph]; A. E. Nelson, T. Okui, and T. S. Roy, (2011), arXiv:1104.2030 [hep-ph]; X.-P. Wang, Y.-K. Wang, B. Xiao, J. Xu, and S.-h. Zhu, (2011), arXiv:1104.1917 [hep-ph]; L. A. Anchordoqui, H. Goldberg, X. Huang, D. Lust, and T. R. Taylor, (2011), arXiv:1104.2302 [hep-ph]; S. Jung, A. Pierce, and J. D. Wells, (2011), arXiv:1104.3139 [hep-ph]; G. Zhu, (2011), arXiv:1104.3227 [hep-ph]; P. J. Fox, J. Liu, D. Tucker-Smith, and N. Weiner, (2011), arXiv:1104.4127 [hep-ph]; D.-W. Jung, P. Ko, and J. S. Lee, (2011), arXiv:1104.4443 [hep-ph]; K. Babu, M. Frank, and S. K. Rai, (2011), arXiv:1104.4782 [hep-ph]; Q.-H. Cao, M. Carena, S. Gori, A. Menon, P. Schwaller, et al., (2011), arXiv:1104.4776 [hep-ph].

[7] C. Degrande, J.-M. Gerard, C. Grojean, F. Maltoni, and G. Servant, (2010), arXiv:1010.6304 [hep-ph];
 J. Aguilar-Saavedra and M. Perez-Victoria, (2011), arXiv:1103.2765 [hep-ph].

(from Krohn et al.)

Main idea: exotic tree-level contributions

Cao, McKeen, Rosner, Shaughnessy, Wagner

Reviews, see: Rodrigo, Ferrario; Shu, Wang, Zhu;

Gresham, Kim, Zurek

recall, no interference of

• without interference, hard to get large A_{FB} without generating large (unwanted) contributions to

 $\sigma_{t\bar{t}}$, $d\sigma/dM_{t\bar{t}}$

Two main avenues:

Heavy color-octet gauge bosons

Hill et al.; Agashe, Perez, et al. Choudhury et al.; Bai et al.

model-independent analysis:

Rodrigo, Ferrario

$$\mathcal{L} = g_S t^a \, \bar{q}_i (g_V^{q_i} + g_A^{q_i} \, \gamma_5) \, \gamma^\mu \, G_\mu^a \, q_i$$

flavor-non-universal: $g_{V,A}^t \neq g_{V,A}^q$

$$\begin{split} \frac{d\hat{\sigma}^{q\bar{q}\to t\bar{t}}}{d\cos\theta^*} &= \alpha_s^2 \frac{\pi\sqrt{1-4m^2}}{9\hat{s}} \times \\ &\times \left[\left(1+4m^2+c^2\right) \left(1-\frac{2g_V^q g_V^t \hat{s}(M_{G'}^2-\hat{s})}{(\hat{s}-M_{G'}^2)^2+M_{G'}^2\Gamma_G^2} + \frac{g_V^{t2}(g_V^{q^2}+g_A^{q^2})\hat{s}^2}{(\hat{s}-M_{G'}^2)^2+M_{G'}^2\Gamma_G^2} \right) \\ &+ \left(1-4m^2+c^2\right) g_A^{t2}(g_V^{q^2}+g_A^{q^2}) \frac{\hat{s}^2}{(\hat{s}-M_{G'}^2)^2+M_{G'}^2\Gamma_G^2} \\ &\qquad \qquad \left(\frac{\hat{s}(M_{G'}^2-\hat{s})}{(\hat{s}-M_{G'}^2)^2+M_{G'}^2\Gamma_G^2} - 2g_V^q g_V^t \frac{\hat{s}^2}{(\hat{s}-M_{G'}^2)^2+M_{G'}^2\Gamma_G^2} \right) \right] \\ c &= \beta \cos\theta^* \end{split}$$

- interference contributes to positive \mathbf{A}_{FB} if $~g_A^t\,g_A^q<0$
- ullet if flavor-universal $\,g_{V\!,A}^t\,=\,g_{V\!,A}^q\,$ interference can't do it
- Need |...|² and large vector couplings.

Beware of:
$$d\sigma/dM_{t\bar{t}}$$
 LHC dijets

Rodrigo, Ferrario

$$g_V^t = g_V^q = 0$$

Extra weak gauge bosons

Berger et al.; Fox et al. Aguilar-Saavedra, Perez-Victoria Jung, Murayama, Pierce, Wells

$$\mathcal{L} = \frac{1}{\sqrt{2}} \bar{t} \gamma^{\mu} (g_L P_L + g_R P_R) u Z'_{\mu} + \frac{1}{\sqrt{2}} \bar{d} \gamma^{\mu} (g_L^2 P_L + g_R^2 P_R) t W'_{\mu}$$

- large flavor-violating couplings
- t-channel avoids large features in $\,d\sigma/dM_{tar{t}}$
- ...and is efficient in generating A_{FB}

predicts same-sign tt pairs.
 Constraints from Tevatron,
 copious at LHC.

in some models, helps with CDF Wjj anomaly

Conclusions:

- tantalizing situation but, too soon for conclusions
- if data persist, QCD unlikely to explain observed A_{FB}
- LHC should provide answers:

$$A_C(y_C) = \frac{\sigma_t(|y| \leq y_C) - \sigma_{\bar{t}}(|y| \leq y_C)}{\sigma_t(|y| \leq y_C) + \sigma_{\bar{t}}(|y| \leq y_C)} \qquad \text{Antunano,K\"uhn,}$$
 Rodrigo

- Tosi's talk: $A_{
 m ch}(|\eta_t| |\eta_{ar t}) = 0.060 \pm 0.134 \pm 0.026$ QCD: ~1% (Rodrigo)
- plus: like-sign tops, dijets, ...