
CMS & Git
Giulio Eulisse

1lunedì 16 settembre 13



Reality check

• Every few years or so physics needs to 
realign to reality:

• The atom is not one big pudding of 
protons and electrons

• No Technicolor

• I will not comment about SUSY...

• The damn cat is either dead or alive...

2lunedì 16 settembre 13



Reality check

• The same is true for HEP software:

• Fortran vs. C++

• Grid vs. Cloud

• Quattor vs. Puppet

• In house tools vs. industry standards

• CVS was designed in 1986, no new release since 
2008. The rest of the world has long moved on...

3lunedì 16 settembre 13



cvs hggit svn

Popularity*

* as defined by Google Trends

4lunedì 16 settembre 13



A brave new world

• Long shut down as an opportunity to align to 
2013:

• New Version Control Systems

• New Development Model

• The goal is to minimize the potential barrier 
required for newcomers in the next 5-10 
years and to minimize the extra custom 
layers required.

5lunedì 16 settembre 13



CMS CVS usage
• 10+ years of experience with CVS

For over the last 10 years CMS has been using CVS as their VCS, initially 
on our own server, then on CERN/IT ones, AFS based (sigh).

• 10+ years of workarounds and bad practices due to ill-
fated CVS design

Massive hierarchy of folders (“packages”) to minimize concurrent 
development

The HEAD of the repository was technically a “junk-yard”

Per package tags 

CMS Tag Collector, rich-man release management tool

6lunedì 16 settembre 13



Typical integration issue

I need:
Package A, V00-01-00
Package B, V00-02-01

I need:
Package A, V00-01-01
Package B, V00-01-01

• Integrating parallel developments lead to circular 
dependencies, dropping bug fixes, VXX-YY-ZZ-UU-
WW tags, usage of “-j” option in CVS...

• To avoid there was a proliferation of packages in 
order to avoid parallel development altogether.

• Sometimes the only solution was to keep a wiki 
page with 20 or so file / revision pairs...

7lunedì 16 settembre 13



Picking up a better 
development model

• Continuos Integration:

• HEAD of release branches must be always in a releaseable state (apart 
from bugs, of course). No more unfinished developments in the HEAD.

• Topic Branches:

• New developments / bug-fixes need to happen in separate branches and 
will be merged in the release branch once ready and tested.

• Easy integration of unrelated changes:

• Fixing a warning and changing a cut in the same package should not 
require 3 different tags in order to be done 

• Easy traceability of changes:

• It must be easy to track the history of a project globally, not only on a 
per-file basis.

8lunedì 16 settembre 13



Enter git

• git matches extremely well such a 
development model

• Easy branching

• Easy merging of changes

• Disconnected operations

• Designed for distributed development

9lunedì 16 settembre 13



git based workflow
• Still one authoritative repository: https://github.com/cms-sw/cmssw

Includes full per file history of the old CVS repository, at least for files which entered some 
release. All release tags ported to the new repository. 

• One branch per active release

CMSSW_7_0_X, CMMSW_6_2_X, CMSSW_5_3_X, CMSSW_4_4_X, etc..

• Topic branches

Developers use their private repositories to prepare additions in form of a branch and 
submit them for integration via the Github “Pull Requests” mechanism.

Topic branches can also be shared among peers to ease collaboration.

• Sign-off workflow

Pull Requests are validated by various Offline Software conveners (RECO, SIM, CORE, HLT, 
etc) and merged into the main branch. Automated signature handling by a bot. 

10lunedì 16 settembre 13



github.com

official-cmssw

my-cmssw

working area

get official version
(via git cms-addpkg)

via git push my-cmssw

develop locally

pull request

https://github.com/albert/cmssw

11lunedì 16 settembre 13

http://github.com/albert/cmssw
http://github.com/albert/cmssw


github.com

official-cmssw

my-cmssw

working area

get unmerged pull request / official 
topic branches

(git cms-merge-topic <pullrequest-id> )

via git cms-merge-topic albert:his-branch

git cms-merge-topic to fetch 
other people branches

https://github.com/albert/cmssw

12lunedì 16 settembre 13

http://github.com/albert/cmssw
http://github.com/albert/cmssw


13lunedì 16 settembre 13



14lunedì 16 settembre 13



15lunedì 16 settembre 13



16lunedì 16 settembre 13



17lunedì 16 settembre 13



Impedance mismatch 
between HEP and git

Git design assumptions

Disk space is cheap

Developer knows how to build 
the software from scratch

Developer will happily have a 
single release area on his laptop 
SSD disk

CMSSW development workflow

We tend to work in terms of a 
base release (hosted centrally) on 
top of which we checkout a few 
packages in a so called 
development area.

We tend to create many 
development areas, one per 
“TODO” item.

18lunedì 16 settembre 13



Working around the 
mismatch -- CMS way

• Sparse Checkout 

Feature of git allows to have most of the capabilities of single 
package checkouts back.

• Reference Cloning (--reference)

A local mirror of the Github repository reduces to few 
megabytes the overhead of a given work-area. Objects in the 
git object-storage which are present in the reference 
repository will be picked up from there, and not copied in 
the workarea.

19lunedì 16 settembre 13



What’s the status?
CMSSW is 100% migrated to git

We have done a number of releases (both production and development ones) already and 
we have twice per day integration builds which happily do not compete for CVS locks on AFS.

Rough start, mostly due to broken tools (mea culpa!)

The lesson learned is that if you are finding yourself writing a wrapper or a custom 
tool, you should probably think twice about it, and then think again if you still think it’s 
a good idea.

Avoid as much as possible the idea of mapping CVS / SVN to git

People are starting to see the light

Even some of the most reluctant developers are starting to appreciate the new 
development model.

20lunedì 16 settembre 13



Time scale

From 0 to “Migration Done” in ~6 months, with 50% of an 
average developer (myself).

By far the most challenging part is discussing with people, 
preparing documentation and answering questions.

Preparing tools was also a large part of the work, but in 
many cases the best solution is just to resist, keep it simple 
and do what everyone else is doing with standard git 
command

21lunedì 16 settembre 13



Bad ideas

Some of the helper scripts are overly complicated just 
to hide things to users which they should probably learn

Migrating the per-file history was probably not the 
correct thing to do. We should have migrated the per 
release history, interpolating the per file commits in 
between 

The CVS keywords caused a lot of problems in the 
beginning. I wish there was a way to nuke them 
completely from the repository

22lunedì 16 settembre 13



Bad ideas

I initially wanted to have our own custom interface 
on top of Github API. This is doable, but it requires 
dedicated manpower for the development and 
would have required us to maintain a MemCached 
(or similar) service, which is really missing the 
whole point (going from CERN supported Oracle 
to CMS supported Memcached is no 
improvement, at all).

23lunedì 16 settembre 13



Good ideas
Using Github

In rough seas you need a safe harbor which “just works”

Great hosting and support

Pull requests

Ability to comment on pull request and keep review and approval 
process together

Some people adore the possibility of refining the same topic branch as 
the review progresses, rather than having to open a new one

Sparse checkout and reference repositories to minimize disk / 
workarea size

24lunedì 16 settembre 13



Good ideas
Using git

Parallel developments are mostly no-brainers now

git is already showing a big edge for large changes, distributed across the 
whole code base

Topic branch development model

Simply the correct thing to do

Github pull requests make it a breeze, even for newcomers

Leveraging Github labels to keep track of approvals

Having a comment bot to handle the various +1 / -1 as incredible as it 
might sound, turned out to be an extremely good idea

25lunedì 16 settembre 13



Random quotes
The slogan for the Subversion was ‘CVS done right’. And if you start with that 
kind of slogan, there is nowhere you can go. There is no way to do CVS 
right.

Linus Torvalds

I was about to cry due to the sanity of an such an idea (moving CMSSW to 
Github).

Anonymous master student

Please do not use “vim” for the tutorial, it locks our users’ shell.

Anonymous

Non-technical questions sometimes don't have an answer at all.

Linus Torvalds

http://cms-sw.github.io/cmssw
26lunedì 16 settembre 13

http://cms-sw.github.io/cmssw/index.html
http://cms-sw.github.io/cmssw/index.html


Backup slides

27lunedì 16 settembre 13



git DB structure

28lunedì 16 settembre 13



git DB structure

29lunedì 16 settembre 13



git DB structure

30lunedì 16 settembre 13



git workflow

31lunedì 16 settembre 13



32lunedì 16 settembre 13


