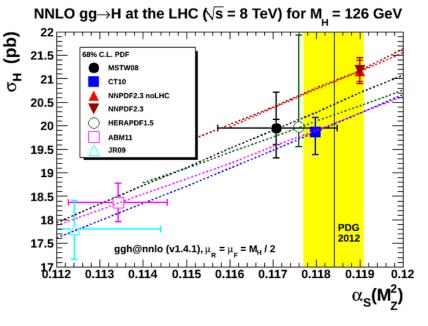

First stable release HERAFitter 1.0.0

Stefano Camarda For the HERAFitter team

HERAFitter Open Source QCD Fit Platform to determine PDFs

Outline:

- Motivation
- Project Overview
- Functionality
- Application and Results


HERAFitter

PDF4LHC Meeting – December 13th 2013

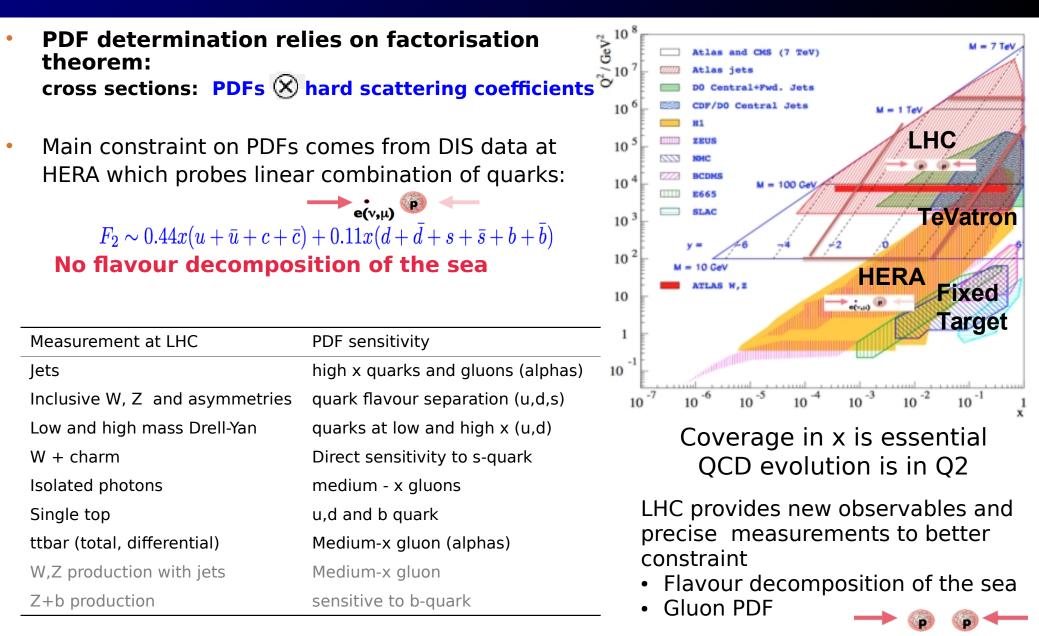
Motivation

- PDFs are essential for precision physics at the LHC:
 - PDFs are one of the main theory uncertainties in Higgs production
 - PDF uncertainties also affect theory predictions for BSM high mass production
- PDF uncertainties arise from:
 - Precision of experimental data
 - Differences among several groups:
 - ▼ MSTW, CT, NNPDF, HERAPDF, ABM, JR
 - Current benchmarking of PDFs 10% differences among PDF groups for predictions for the Higgs cross section

Crucial to understand the theoretical differences Alignment Align Alignment Alignment Alignment Align Alig

ightarrow important to provide accurate data for better PDF discrimination

HERAFitter provides an ideal framework for

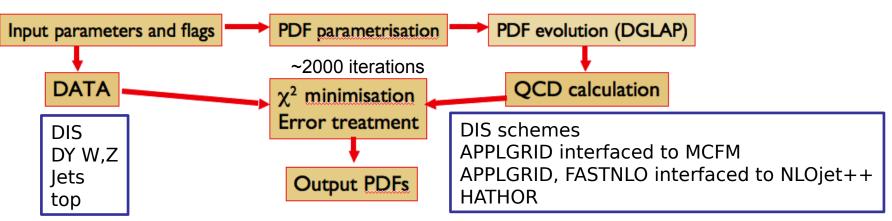

- Investigation of different methodologies in PDF fits
- Assess the impact of data on PDF $\rightarrow\,$ improve the sensitivity of new measurements to PDF

PDF4LHC

Stefano Camarda

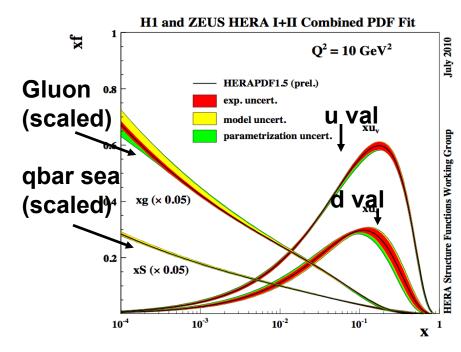
[G. Watt, Nov 2012]

Proton Structure

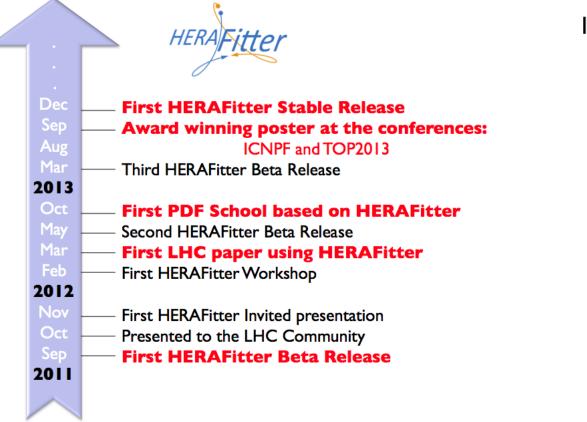


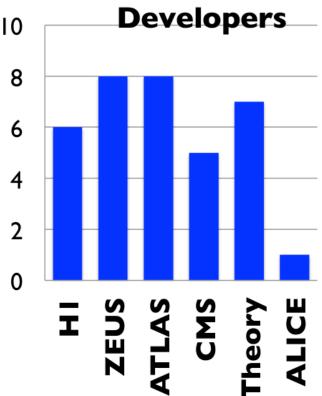
PDF4LHC

3

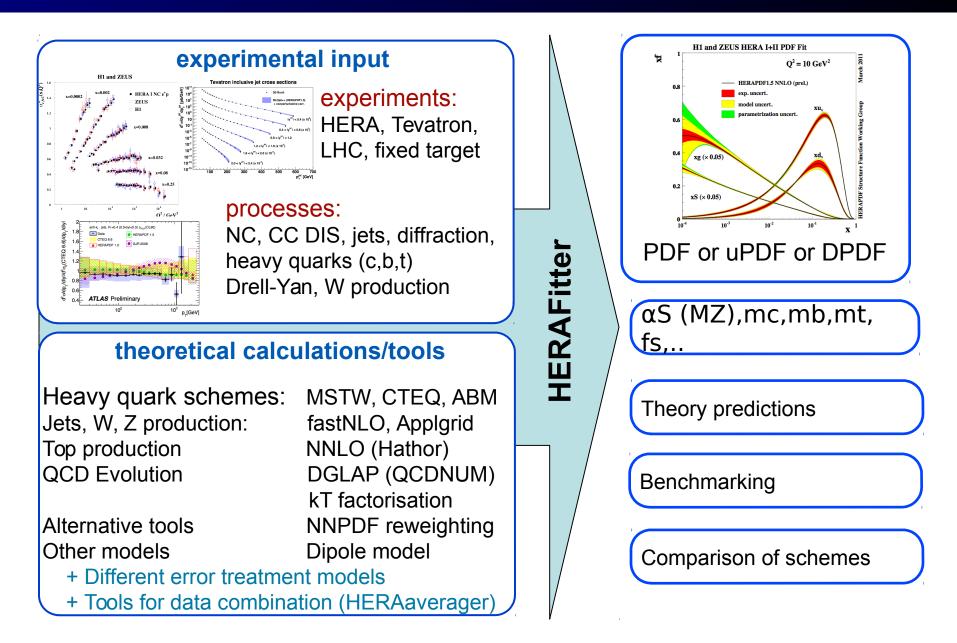

Schematics of PDFs determination

Flow diagram of PDF determination in QCD fit


Data


- Important to provide uncertainties correlation Theory
- Need fast tools to perform PDF fits: APPLGRID, FASTNLO
 - \rightarrow grid techniques relying on factorisation theorem

HERAFitter Project


$\textbf{Dec 2013} \rightarrow \textbf{First Stable Release HERAFitter 1.0.0}$

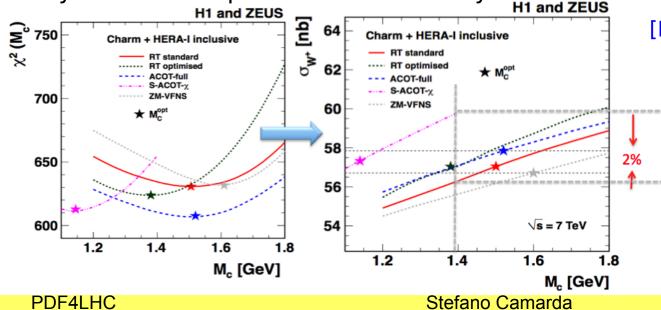
- Unique framework to address PDF theoretical differences
- Provides means to the experimentalists to assess impact of new data

HERAFitter 1.0.0 in a glance

PDF4LHC

Heavy Flavour Schemes in DIS

For the DIS process, several schemes are available for heavy quark treatments:


VFNS (Variable Flavour Number Schemes):

- RT-VFNS schemes (RT STandard, RT Optimal) as used by MSTW group (as well as variants based on k-factors RT FAST, RT OPT FAST)
- v Zero Mass VFNS [qcdnum, ACOT variant]
- ACOT Full, ACOT Chi, ACOT ZM, they are all based on k-factors as used by CT group

FFNS (Fixed Flavour Number Scheme)

- v via QCDNUM
- $^{\rm v}$ Via Openqcdrad-1.6 as used by ABM

Variety of scheme options was studied by HERA in F2 charm HERA combined paper

[Eur. Phys. J. C73 (2013) 2311]

Spread in predictions for W and Z is reduced significantly when predictions are evaluated at the optimal *Mc* determined from F2 charm

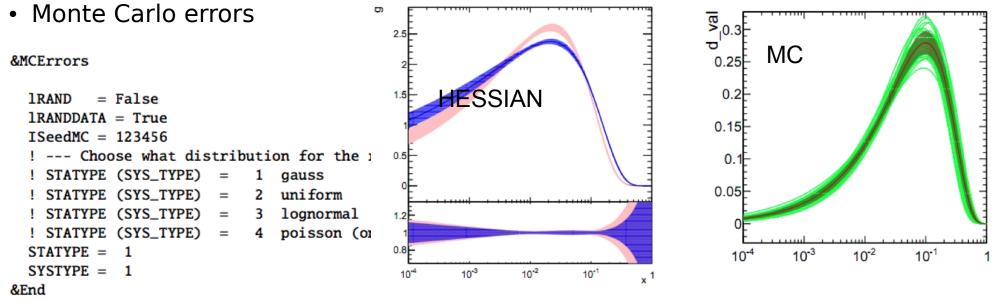
Chi square definitions

- Typical measurements sensitive to PDFs are precise, with statistical uncertainties below 10%, so they follow normal distribution which allows use of chi square minimization for determining optimal PDF parameters.
- The HERAFitter package allows for various types of data uncertainty treatment:
 v Various chi square representations:
 - Simple form:

$$\chi^{2}_{\exp}(\boldsymbol{m}, \boldsymbol{b}) = \sum_{i} \frac{\left[m^{i} - \sum_{j} \gamma^{i}_{j} m^{i} b_{j} - \mu^{i}\right]^{2}}{\left(\delta_{i, \text{stat}} \mu^{i}\right)^{2} + \left(\delta_{i, \text{uncor}} \mu^{i}\right)^{2}} + \sum_{j} b_{j}^{2}.$$

• Scaled form:

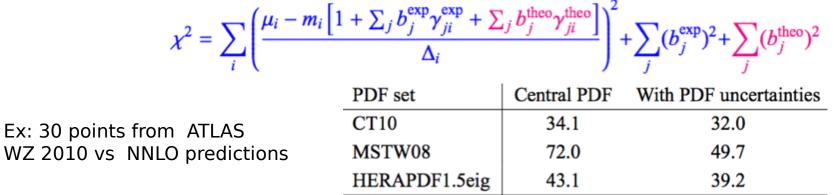
$$\chi^{2}_{\exp}(\boldsymbol{m}, \boldsymbol{b}) = \sum_{i} \frac{\left[m^{i} - \sum_{j} \gamma^{i}_{j} m^{i} b_{j} - \mu^{i}\right]^{2}}{\delta^{2}_{i, \text{stat}} \mu^{i} \left(m^{i} - \sum_{j} \gamma^{i}_{j} m^{i} b_{j}\right) + \left(\delta_{i, \text{uncor}} m^{i}\right)^{2}} + \sum_{j} b_{j}^{2} + \log \text{ penalty}$$

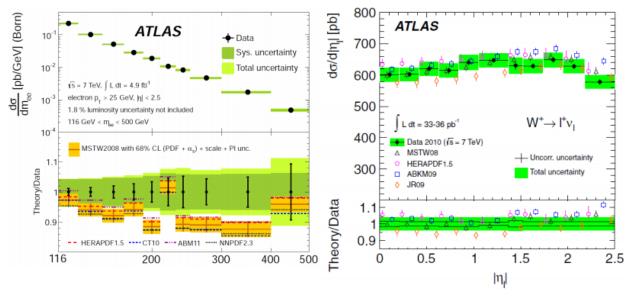

Mixed form (covariance and nuisance parameter):

$$\chi^{2}_{\exp}(\boldsymbol{m}, \boldsymbol{b}) = \sum_{ij} \left(m^{i} - \sum_{l} \Gamma^{i}_{l}(m^{i})b_{l} - \mu^{i} \right) C^{-1}_{\text{stat. }ij}(m^{i}, m^{j}) \left(m^{j} - \sum_{l} \Gamma^{j}_{l}(m^{j})b_{l} - \mu^{j} \right) + \sum_{l} b_{l}^{2} d_{l}^{2} d_{l}^{2}$$

Experimental Uncertainties

HERAFitter provides various methods for the treatment of experimental uncertainties


Asymmetric Hessian errors

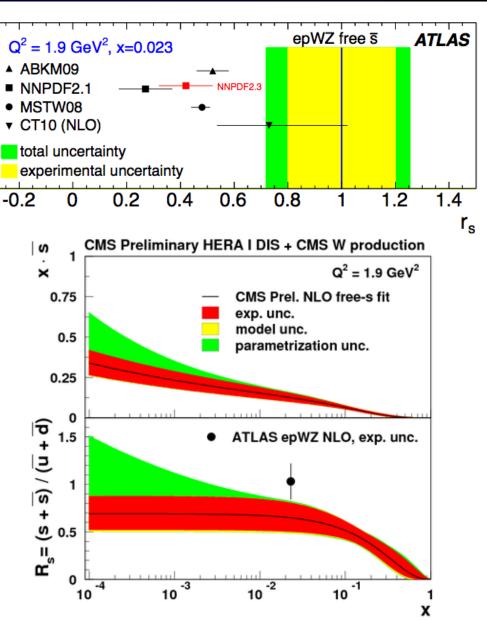

- Monte Carlo Method for error estimation compared to Hessian error propagation:
 - Benchmarking exercise with NNPDF group [arXiv:0901.2504]
 - Regularisation methods: constrain PDFs with a flexible parametrisation style
 - Data Driven Regularisation (as used by NNPDF) fit and control samples
 - External Regularisation based on a penalty term in chisq

Quantitative Comparison between data and theory

HERAFitter provides a quantitative assessment of level of agreement between data and theory by taking into account theoretical and experimental uncertainties

Used in ATLAS publications:

Phys. Lett. B 725 (2013) 223 Phys. Rev. D 85 (2012) 072004 Stefano Camarda


Determination of the strange quark in the proton

- Using W+, W-, Z (35/pb) inclusive cross sections – ATLAS [PRL 109 (2012) 012001] (kinematic region probed is at x~0.01)
 - NNLO QCD Analysis
 - ATLAS-epWZ-EIG.LHgrid available in Ihapdf

 $r_s = 1.00 \pm 0.20 \exp \pm 0.07 \mod_{-0.15}^{+0.10} \arg_{-0.07}^{+0.06} \alpha_s \pm 0.08$ th.

- Using W+charm (5/fb) and W muon asymmetry (4.7/fb) – CMS [SMP-12-021]
 - NLO QCD Analysis: determination of Rs(x)

More details in Mark and Georg's talks

PDF4LHC

11

Sensitivity to gluon and strong coupling:

(×) 5)2.5

1.5

0.5

rel. nucert 1 0.9

~ 2.0

1.5

0.5

0.0

 10^{-4}

-0.1

 $xf(x,Q^2)$

Uncert

Fract.

NEW

 $Q^2 = 1.9 \text{ GeV}^2$

10⁻³

HERA DIS + CMS lets

 10^{-3}

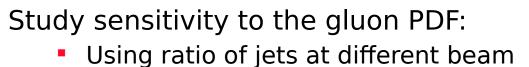
3.0 CMS Preliminary

2.5H ZZ HERA DIS

HERAI fit

HERA+ATLAS jets R=0.6 fit

10⁻²


 10^{-2}

x

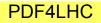
10⁻¹

gluon, $Q^2 = 1.9 \text{GeV}^2$

HERA+ATLAS jets 2.76 TeV R=0.6 fit

- energies ATLAS [EPJC (2013) 73 2509]
 - Compare the gluon for PDF fit using just HERA I and a fit using HERA I + ATLAS 2.76, 7 TeV jet data (2010)

Using inclusive jet cross section at 7 TeV CMS data from 2011 (5/fb) [SMP-12-028]:

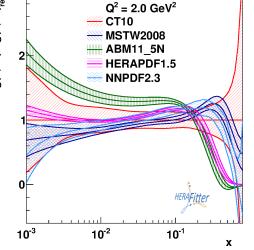

 PDFs are extracted and compared to fits using just HERA I and fits using HERA I + CMS 7 TeV jet data

Extraction of the strong coupling:

From PDF and alphas simultaneous fit:

$$\alpha_S(M_Z) = 0.1192 \,{}^{+0.0017}_{-0.0015}$$

More details in Mark and Georg's talks

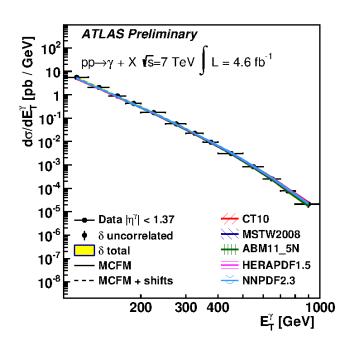


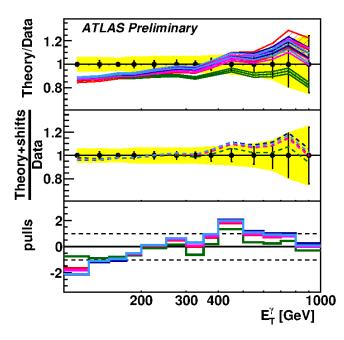
 10^{-1}

ATLAS

PDF Sensitivity study on prompt photon

 $\mathsf{xg}(\mathsf{x}, \mathsf{Q}^2)/\mathsf{xg}(\mathsf{x}, \mathsf{Q}^2)_{\mathsf{ref}}$


First result with stable release HERAFitter 1.0.0


Assess:

- Compatibility between data and NLO predictions
- Sensitivity to the gluon PDF

HERAFitter 1.0.0 stable release provides automatic tools for:

- χ² comparison with and without PDF uncertainties
- PDF plots
- Data plots

PDF4LHC

Summary

- Successful releases of the HERAFitter package an open source QCD Framework designed to help address the theoretical differences, but mostly provides means for various tests within experimental data analysis
 - HERAFitter platform has grown into a multi-functional QCD platform:
 - v Various treatments for heavy flavours;
 - v Various options for data uncertainties treatment;
 - Various parametrisation techniques;
 - Various physics cases.

Stable release available: herafitter-1.0.0

- www.herafitter.org
- herafitter-help@desy.de

We welcome new developments!

HERAFitter perspectives

- A list of planned developments:
- Theory (short and long terms):
 - QED PDFs
 - Nuclear + proton PDFs.
 - Heavy Flavour scheme in QCDNUM, using fast convolution engine.
 - Improvements in Hathor cross-section calculation for fits, other ttbar codes
 - Addition of DiffTop program to calculate differential cross sections
 - EW corrections.
 - DYNNLO in APPLGRID.
 - Photon's PDF.
 - Different evolution schemes:
 - v e.g. matched to MC showering, mixed Dipole-DGLAP fits.

Data treatments:

Alternative to MINUIT minimization package

Results using HERAFitter

- Following PDF grids have been generated since the start of the project:
 HERAPDF1.0, HERAPDF1.5, ATLAS-epWZ12, LHeC-NLO
- HERAFitter has been used in the following publications:

- " Determination of the strange quark density of the proton from ATLAS measurements of the W and Z cross sections" [PRL 109 (2012) 012001]
- " Measurements of the inclusive jet cross section in pp collisions at 2.76 TeV and comparison to the inclusive jet cross section at 7 TeV using the ATLAS detector" [EPJC (2013) 73 2509]
- " Measurement of the high-mass Drell-Yan differential cross-section in pp collisions at 7 TeV with the ATLAS detector" [PLB 725 (2013) 223]
- " Measurement of the muon charge asymmetry in pp W production at 7 TeV" [SMP-12-021]

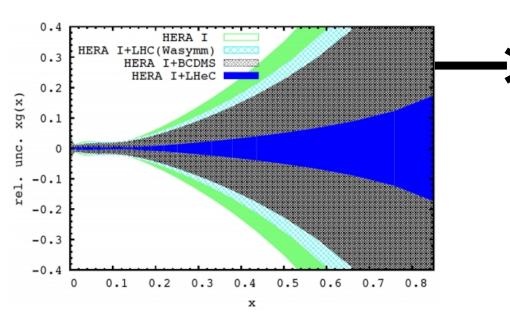
" PDF constraints and extraction of the strong coupling constant from the inclusive jet cross section at 7 TeV" [SMP-12-08]

PDF4LHC

" Combination and QCD Analysis of Charm Production Cross Section Measurements in Deep Inelastic ep Scattering at HERA" [EPJC (2013) 73 2311] "Inclusive Deep Inelastic Scattering at High Q2 with Longitudinally Polarised" [JHEP 1209 (2012) 061]

LHeC impact studies [Journal of Phys. G 39 (2012)]

Theory "Parton Distribution Uncertainties using Smoothness Prior" [PLB 695 (2011) 238]

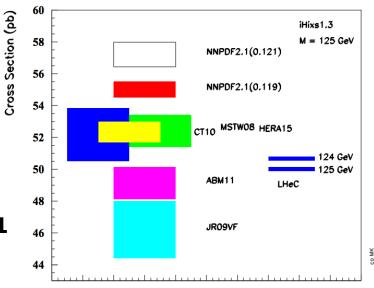

Backup

Impact studies of LHeC on PDFs

HERAFitter provides the possibility to perform impact studies using simulated data:

LHeC can provide a complete PDF set with precise gluon, valence, and strong coupling:

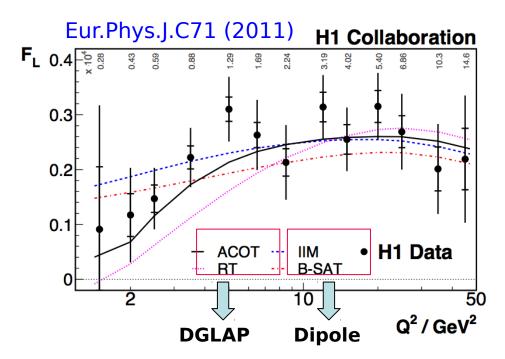
LHeC promises per mille accuracy on alphas – using HERAFitter [Journal of Phys. G 39 (2012)]



14 TeV gg \rightarrow H total cross section at the LHC calculated for a variety of PDFs at 68% CL

- precision from LHeC can add a very significant constraint on the mass of the Higgs
- LHeC-NLO. LHgrid available since lhapdf v5.9.1

case	cut $[Q^2 \mbox{ in GeV}$	relative precision in $\%$
HERA only (14p)	$Q^{2} > 3.5$	1.94
HERA+jets (14p)	$Q^2>3.5$	0.82
LHeC only (14p)	$Q^{2} > 3.5$	0.15
LHeC only (10p)	$Q^2>3.5$	0.17
LHeC only (14p)	$Q^2 > 20.$	0.25
LHeC+HERA (10p)	$Q^2 > 3.5$	0.11
LHeC+HERA (10p)	$Q^{2} > 7.0$	0.20
LHeC+HERA (10p)	$Q^{2} > 10.$	0.26


NNLO pp-Higgs Cross Sections at 14 TeV

PDF4LHC

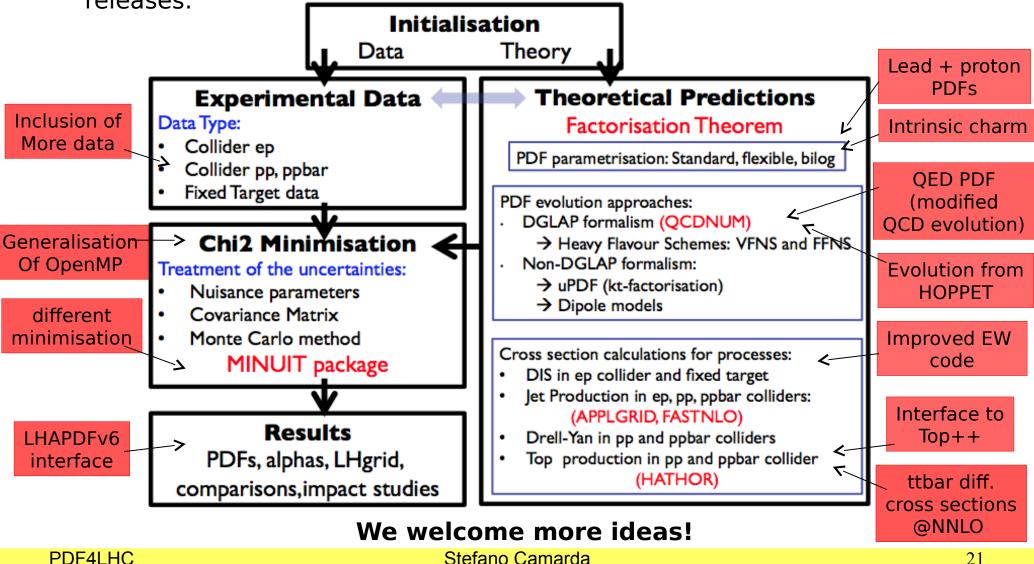
Low x Physics

- As an alternative to DGLAP, HERAFitter includes also Dipole models:
 - Studied by the H1 collaboration in comparing different models on FL:
 - v Dipole Models implemented in HERAFitter:
 - GBW model: first model
 - IIM (based on BK-equation)
 - BGK (based on GBW, but gluon evolved using DLGAP)
 - v DGLAP Models:
 - RT as used by MSTW group
 - ACOT as used by CTEQ group

- Unintegrated PDFs based on the kT-factorisation (CCFM) evolution.
 - applicable only to NC ep scattering <u>https://www.herafitter.org/HERAFitter/HERAFitter/HERAFitterMeetings/Meeting2012-Oct-29?action=AttachFile</u> <u>&do=get&target=</u> <u>updf.pdf</u>
- Diffractive DIS PDF fits.

PDF4LHC

uPDFs in HERAFitter


$$rac{d\sigma}{dxdQ^2} = \int dx_g ig[dk_\perp^2 x_g \mathcal{A}_i(x_g,k_\perp^2,p) ig] \hat{\sigma}(x_g,k_\perp^2,x,Q^2)$$

- $\hat{\sigma}(x_g, k_{\perp}^2, x, Q^2)$ is (off-shell, k_t dependent) hard scattering cross section
- uPDFs for gluons and quarks needed:
 - Until now: only gluon uPDF determined
- valence quarks: use starting distribution CTEQ6
- method: $\sigma_r(x,Q^2) = \int^1 dx_g \mathcal{A}(x_g,k_{\perp},p)\hat{\sigma}(x,x_g,Q^2)$ • calculate $\int_{x/x'}^1 dx'' \tilde{\mathcal{A}}(x'',k_{\perp},p) \cdot \hat{\sigma}(x,x'x'',Q^2)$ in a grid of x",Q²
- starting distribution: $\mathcal{A}_0(x) = N_g x^{-B_g} (1-x)^{C_g} (1-D_g x)$
- calculate $\sigma_r(x,Q^2)$ by 1-dim Gauss integration (fast!)
 - external input:
 - kernel evolution grid for gluon
 - evolved valence quark distribution (as uPDF)
 - convolution of kernel with off-shell ME done in herafitter

HERAFitter Perspectives

HERAFitter has a modular structure facilitating fast developments

 Many new developments are planed to be implemented in future releases:

