

Development of a compact microwave and soft X-ray source in LUCX facility at KEK-ATF

A. Aryshev, S. Araki, M. Fukuda, P. Karataev, G. Naumenko, A. Potylitsyn, K. Sakaue, L. Sukhikh, J. Urakawa, D. Verigin

KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan John Adams Institute at Royal Holloway, Egham, Surrey, TW20 0EX, UK Tomsk Polytechnic University, Tomsk, 634050, Russia

15 September 2011

Outline

- Introduction
- Diffraction radiation
- Compact microwave and soft X-ray source Basic idea
- LUCX facility
- Microwave resonator: design, alignment
- Experimental results
- Summary and plans

Introduction

15 September 2011

Introduction

Institute of Laser Engineering, Osaka University, Japan

Diffraction radiation

 $\boldsymbol{\lambda}$ - observation wavelength

 $\gamma = E/mc^2 - Lorentz - factor$

Diffraction radiation (DR) appears when a charged particle moves in the vicinity of a medium

Impact parameter, h, – the shortest distance between the target and the particle trajectory

Basic idea of compact microwave and soft X-ray source

- Generate microwave radiation
- Stack it in open resonator.
- Scatter CDR on a subsequent bunches generating soft X-ray radiation.

LUCX facility

Parameter	Value	Units
Electron energy	43	MeV
Bunch charge	2 (1.25*10^10)	nC (e/bunch)
Bunch length	10	ps
Number of bunches per pulse	100	
Bunch spacing, lb	2.8 (840)	ns (mm)
Pulse repetition rate	12.5	Hz
Transverse beam dimensions in IP	200 x 200	um
Emittance	5	π mm mrad

ICT multi-bunch traces

RREPS-11

Microwave cavity

15 September 2011

Microwave cavity

15 September 2011

Mirror mount

CDR mirror, Flat

Aluminum mirror on fused silica substrate

15 September 2011

CDR mirror, Concave

Bulk aluminum mirror

CDR beam line, detectors

Detector of scattered photons

CDR (microwave) line

Alignment of CDR (microwave) line

15 September 2011

Alignment laser through CDR section

upstream

downstream

New mirrors back-reflection check

Schottky Barrier Diode

Model								DXP-12 60-90, 3.33-5 1800	
Frequency Range (GHz, mm) Sensitivity (mV/mW at 10 μW input), typ.									
Flatness (dB) typ.							± 2.0		
	. ,			Wave	elength	mm			
		5	4.61	4.28	4	3.75	3.53	3.33	3.16
Sensitivity, mV/mW	3000 -	+ +	+	+	+ +	+	+ +	+ +	+
	2800 -	•							-
	2600 -								-
	2400 -								-
	2200 -		`∎						-
	2000 -								-
	1800 -				 ∎_	-∎			
	1600 -					_		_	-
	1400 -							/	-
	1200 -	· .	· .	· · ·		· .	• , •	•	
	55	60	65	70	75	80	85	90	95
				Fred	uencv.	GHz			

RREPS-11

Detector of scattered photons

15 September 2011

Electron beam optics

X-Y scans for C1 and C2

Angular dependences

Dependence on bunch charge

RREPS-11

SBD scope trace, cavity Q-factor

Autocorrelation, spectrum

Stimulated CDR

A. Aryshev, et. al., Observation of the Stimulated Coherent Diffraction Radiation in an

Open Resonator at LUCX Facility, submitted to PRL

RREPS-11

Demonstration of SASE exponential growth and saturation at the TTF FEL.

J. Rossbach, et. al., Demonstration of gain saturation and controlled variation of pulse length at the TESLA test facility FEL, NIMA 507 (2003) 362–367

Q-factor saturation

RREPS-11

Summary and plans

- We have successfully commissioned microwave resonator system.
- Demonstrated a good power stacking of the Stimulated Coherent Diffraction Radiation.
- Further work remains to fully optimize this system.
- Achieve higher quality factor of the cavity what will gain soft X-ray production via Thomson scattering.

Acknowledgements

We would like to thank the LUCX supporting personnel for helping to conduct the experiment. The authors acknowledge W. Ekkapong and T. Takatomi for their help in mirrors preparation.

The work was carried out with the partial support from the "Grant-in-Aid for Creative Scientific Research of JSPS (KAKENHI 17GS0210)" project and Quantum Beam Technology Program of the Ministry of Education, Science, Sports, Culture and Technology of Japan (MEXT), grant No. 790 of the Ministry of Education and Science of Russian Federation.