STOCHASTIC MECHANISM OF $1-100 \mathrm{GeV} / \mathrm{c}$ CHARGED PARTICLES DEFLECTION BY A BENT CRYSTAL

N.F. Shul'ga, I.V. Kirillin and V.I. Truten

Akhiezer Institute for Theoretical Physics of NSC KIPT, Kharkov, Ukraine

IX International Symposium
Radiation from Relativistic Electrons in Periodic Structures
a) axial channeling;
b) planar channeling;
c) stochastic scattering;

a) axial channeling;
b) planar channeling;
c) stochastic scattering;
d) above-barrier motion.

a) axial channeling;
b) planar channeling;
c) stochastic scattering;
d) above-barrier motion.

Axial channeling and stochastic mechanism

$$
\psi_{x} \approx \psi_{y} \leq \psi_{c}
$$

Planar channeling

Tsyganov E.N., 1976 Preprint Fermilab TM-682, TM-684

Volume reflection

A. Taratin, S. Vorobiev, 1987

Angular distributions of charged $400 \mathrm{GeV} / \mathrm{c}$ particles before and after passing 1 cm of bent Si crystal in the conditions of planar channeling

$\theta_{x}, \mu \mathrm{rad}$

after passing bent Si crystal negatively charged particles

Weak deflection

The main part of the beam
after passing bent Si crystal positively charged particles
 follows bent crystal planes

Good for positively charged particles, but ineffective for negatively charged ones

Angular distributions of charged $400 \mathrm{GeV} / \mathrm{c}$ particles before and after passing 1 cm of bent Si crystal in the conditions of volume reflection

Angular distributions of charged $400 \mathrm{GeV} / \mathrm{c}$ particles before and after passing 1 cm of bent Si crystal in the conditions of stochastic deflection mechanism
initial conditions
after passing bent Si crystal positively charged particles

- Deflection of particles in the direction of crystal bent
-Escape into planar channels
-Beam splitting
after passing bent Si crystal negatively charged particles

Deflection of particles in the direction of crystal bent

Effective for both positively and negatively charged particles

Angular distribution of 400 GeV protons after passing 2 mm of bent Si crystal with $\mathrm{R}=40 \mathrm{~m}$

Experimental results

W. Scandale et al. Phys. Rev. Lett. 101 (2008), 164801

Angular distribution of $150 \mathrm{GeV} \pi^{-}-$mesons after passing 1.172 mm of bent Si crystal with $\mathrm{R}=40 \mathrm{~m}$

Experimental results

W. Scandale et al. Physics Letters B 680 (2009) 301-304

Stochastic mechanism of fast charged particle deflection by a bent crystal

Greenenko-Shul'ga condition (N.F. Shul'ga, A.A. Greenenko, Phys. Lett. B 353, 1995)

$$
\frac{l_{\perp}}{R \psi_{c}} \frac{L}{R \psi_{c}}<\mathbf{1}
$$

R - crystal curvature radius;
$\psi_{c}=\sqrt{4 Z|q e| /(p v d)}-$ critical angle of axial channeling;
$Z|e|$ - atomic charge;
q - particle charge;
v and p - particle velocity and momentum;
d - the distance between neighboring atoms in the atomic string parallel to the selected axis;
l_{\perp} - mean free path of a particle between successive collisions with crystal atomic strings;
L - crystal thickness.

Stochastic mechanism of fast charged particle deflection by a bent crystal

Without the account of the scattering on thermal oscillations of crystal atoms
According to the Greenenko-Shul'ga criterion $L_{\max }=\frac{\left(R \psi_{c}\right)^{2}}{l_{\perp}}$
If $R \rightarrow \infty$, then $\quad L_{\max } \rightarrow \infty \quad$ and $\quad \alpha_{\max }=\frac{L_{\max }}{R} \rightarrow \infty$

With the account of the scattering on thermal oscillations of crystal atoms

$$
L_{\max }=\frac{\psi_{c}^{2}}{\frac{l_{\perp}}{R^{2}+\frac{\varepsilon_{s}^{2}}{E^{2} L_{r a d}}}} \quad \Rightarrow \quad \alpha_{\max }=\frac{\psi_{c}^{2}}{\frac{l_{\perp}+\frac{\varepsilon_{s}^{2} R}{R^{2}} E_{r a d}}{}}
$$

$\varepsilon_{s} \approx 20 \mathrm{MeV}, L_{\text {rad }}$ - radiation length.
if $R \rightarrow \infty$, then $\quad L_{\max }=\frac{\psi_{c}^{2} E^{2} L_{r a d}}{\varepsilon_{s}^{2}}$ and maximum possible angle of beam deflection by a bent crystal $\alpha_{\max }$ is finite.

Initial conditions

Bent Si crystal with thickness $L=1,5 \mathrm{~mm}$ and radius of curvature $R=1,5 \mathrm{~m}$. Crystal bend angle $\alpha=\frac{L}{R}=1 \mathrm{mrad}$.

Crystal is bent in the (001) crystal plane (in which axes x and z are located) in the direction of increasing x.

Initial conditions

Bent Si crystal with thickness $L=1,5 \mathrm{~mm}$ and radius of curvature $R=1,5 \mathrm{~m}$. Crystal bend angle $\alpha=\frac{L}{R}=1 \mathrm{mrad}$.

Crystal is bent in the (001) crystal plane (in which axes x and z are located) in the direction of increasing x.

Particle beam impinges on the crystal along the $\langle 110\rangle$ crystal axis (coinciding with the z axis). Beam divergence is $10 \mu \mathrm{rad}$.

Proton beam deflection by a bent crystal

- With decreasing particle energy the maximum possible angle of beam deflection by the crystal increases

- In the case of negatively charged particles scattering on crystal atoms thermal oscillations is more intense

10 GeV

100 GeV

π^{-}-meson beam deflection by a bent crystal without the account of scattering on crystal atoms thermal oscillations and electronic subsystem

- Without the account of scattering on crystal atoms thermal oscillations the evolution of the negatively charged particle beam in a crystal is almost identical to the evolution of positively charged particle beam

- In the energy area $1 \div 10 \mathrm{GeV}$ the stochastic mechanism of beam deflection gives the opportunity to deflect beams of both positively and negatively charged particles at an angle of about 1 mrad
- For negatively charged particles the account of scattering on crystal atoms thermal oscillations in the specified energy range is crucial for the analysis of beam dynamics
- The simulation shows that the stochastic mechanism of deflection can be successfully used to solve some technical problems (charged particle beam output from accelerators, beam collimation, etc.)

DYNAMICAL CHAOS IN NEGATIVELY CHARGED PARTICLE BEAM SCATTERING BY A BENT CRYSTAL

The beam after passing of 8 mm of Si bent crystal with $\mathrm{R}=185 \mu \mathrm{rad}$:

Experiment
(W. Scandale, A. Vomiero et al.,

Phys. Lett. B, v. 693, 2010, p. 545)

Beam consists of $150 \mathrm{GeV} / c \pi^{-}$-mesons

Simulation of beam motion in a crystal

Simulation of beam motion in random strings approximation
(N.F. Shul'ga, I.V. Kirillin, and V.I. Truten, Phys. Lett. B, v.702, 2011, p. 100)

