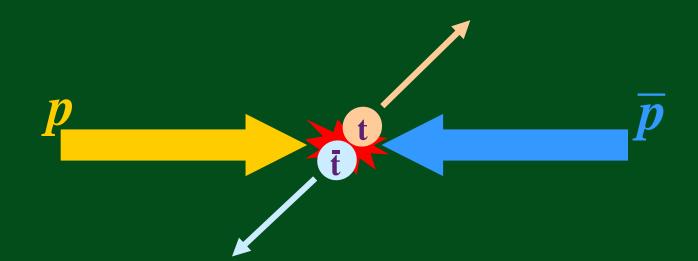
AFB at the Tevatron

Amnon Harel ROCHESTER

4th International Workshop on Top Quark Physics September 25 - 30, 2011 Sant Feliu de Guixols, Spain

AFB at the Tevatron


Amnon Harel ROCHESTER

4th International Workshop on Top Quark Physics September 25 - 30, 2011 Sant Feliu de Guixols, Spain

Forward-Backward?

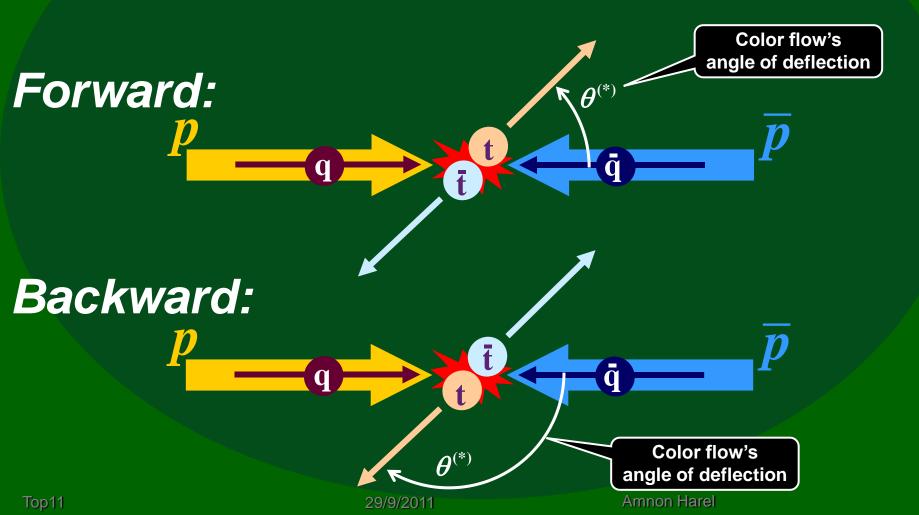
Is it the top or the antitop that is produced preferentially in the direction of the incoming proton?

Choose an angular variable in some rest frame, and define:

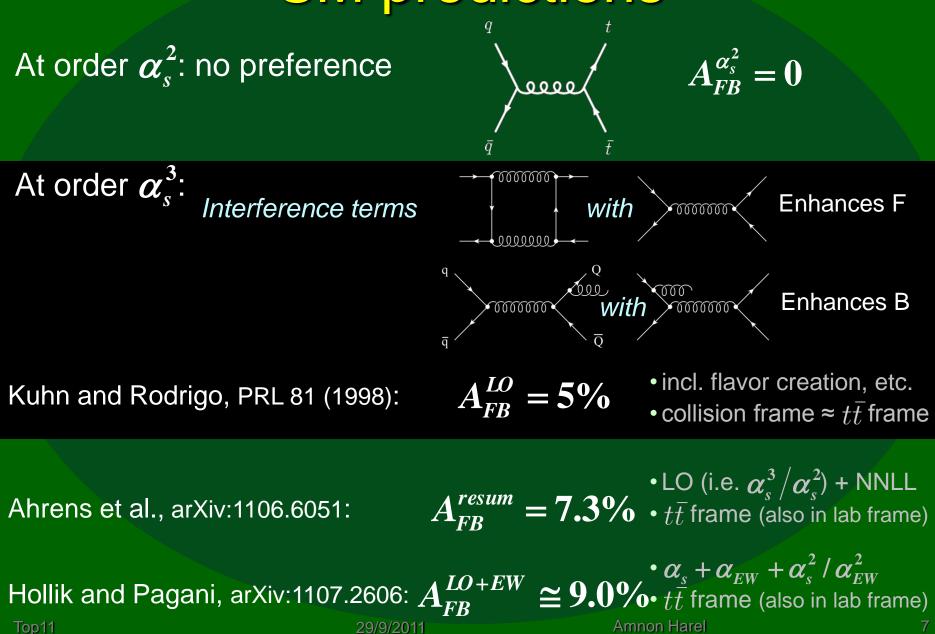
$$A_{FB} = \frac{N_F - N_B}{N_F + N_B}$$

SM motivations

It's not about the incoming protons It's about the incoming quarks • at the Tevatron: $85\%~q\bar{q} \rightarrow t\bar{t} + 15\%~gg \rightarrow t\bar{t}$


q

SM motivations It's not about the incoming protons It's about the incoming quarks and their QCD charges **Color flow's** "charge asymmetry" angle of deflection $oldsymbol{ heta}^{(*)}$ q


SM motivations

It's not about the incoming protons

It's about the incoming quarks and their QCD charges

SM predictions

SM motivations

1."Retro" style: a test of the discrete symmetries of the strong force at high energies (is QCD really the theory of the strong force?)

2. Test of challenging SM calculations

• this is also an argument against the measurement

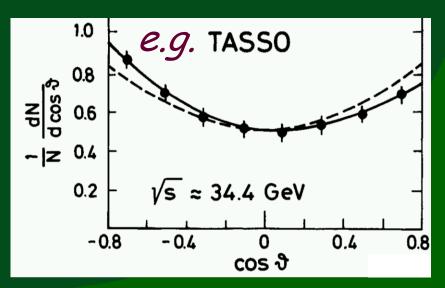
The above reasons got some of us into this measurement

But why are you listening to this talk?

SM motivations

1."Retro" style: a test of the discrete symmetries of the strong force at high energies (is QCD really the theory of the strong force?)

2. Test of challenging SM calculations


• this is also an argument against the measurement

3. Small SM predictions \rightarrow can identify beyond the SM physics

- Already happened for A_{FB} and EW physics in the 80s!
 - A_{FB} in $e^+e^- \rightarrow \mu^+\mu^-$
 - E_{c.m.}=35GeV

Indication for Z resonance

Adrian also reminded us of the LEP precedence – but little learned there

Amnon Harel

Inclusive A_{FB} in lepton+jets

Most powerful channel: lepton (e/μ) + jets Start with the (conceptually) simplest measurements:

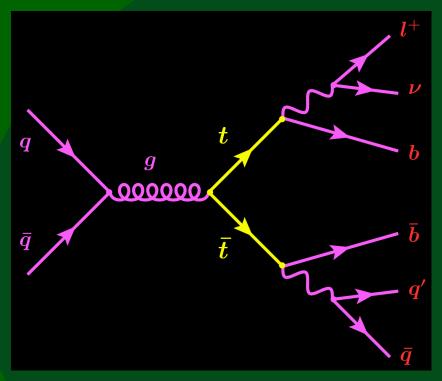
Inclusive measurements with the angular variable: $\Delta y = y_t - y_{\bar{t}} = q_l (y_{t, \text{lep}} - y_{t, \text{had}})$ • i.e. $t\bar{t}$ frame

29/9/2011

- Combines information from both top quarks
- Invariant to boosts along the beam axis

- and so: $A_{\rm FB}=\frac{N(\Delta y>0)-N(\Delta y<0)}{N(\Delta y>0)+N(\Delta y<0)}$

Phys. Rev. D 83, (2011) 112003 $\int \mathcal{L} dt = 5.3 \, {\rm fb}^{-1}$



arXiv:1107.4995 Submitted to Phys. Rev. D $\int \mathcal{L} dt = 5.4 \, {\rm fb}^{-1}$

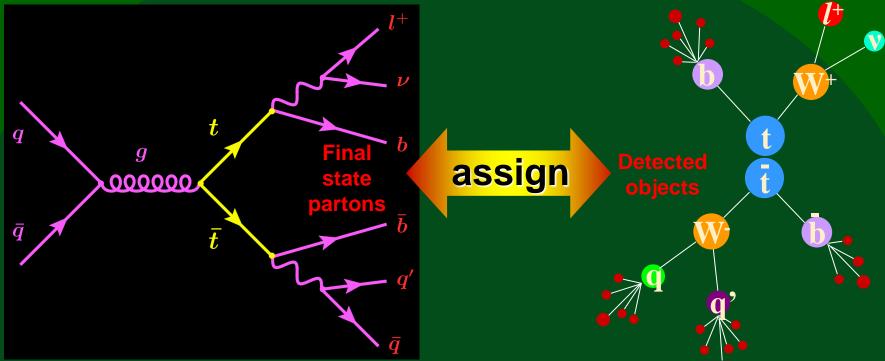
flavor tag

Amnor

Selection

Require:

- 1 lepton with $E_T \ge 20 \text{ GeV}$
 - CDF: |η| < 1.1
 - DØ: $|\eta_e| < 1.1, |\eta_{\mu}| < 2.0$
- p_T imbalance (MET) > 20 GeV
- \geq 4 jets with $E_T \geq$ 20 GeV
 - CDF: |η| < 2.0
 - DØ: |η| < 2.5
- \geq 1 *b*-tagged jet



1581 events29% background1126 est. signal

l+*jets*

Reconstruction

Assign objects to final state partons using χ^2 test statistic that accounts for experimental resolutions, *b*-tags, M_w=80.4GeV & m_t=170GeV

l+*jets*

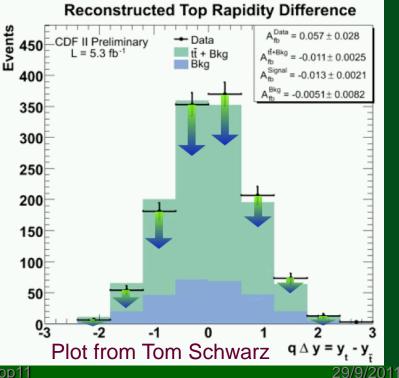
Varies object E in χ^2

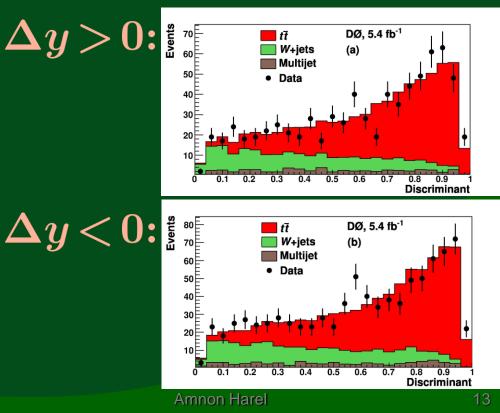
 χ^2 includes Γ_W and Γ_t

Object E and direction varied and propagated into reconstruction ("kinematic fitter")

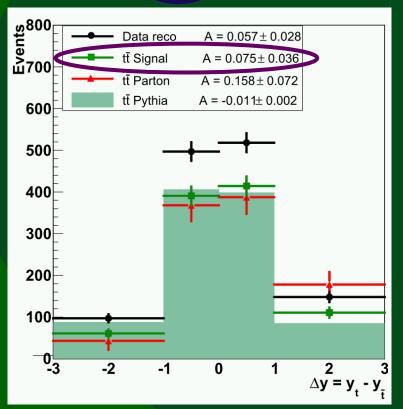
Assignment \rightarrow All final state 4-vectors available. In particular, Δy ^{Top11} Amnon Harel</sup>

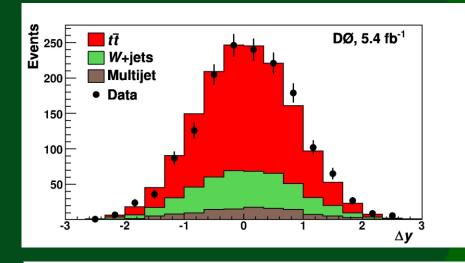
Extracting detector-level A_{FB}


Subtract estimated background

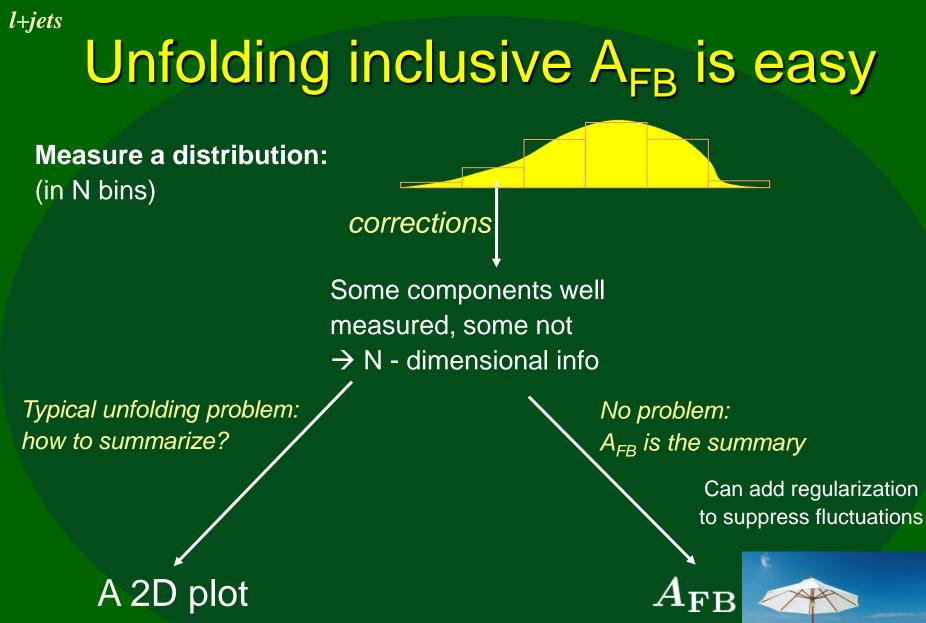

Estimates from x-sec measurements

W+jets estimated from N_{pre-b-tag}


Fit for sample composition and A_{FB} Discriminant for W+jets vs. signal



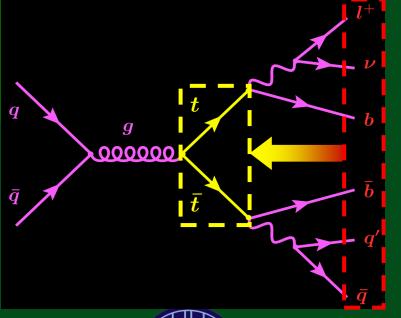
Detector-level A_{FB}s



	$l+\geq 4$ jets	l+4 jets	$l+\geq 5$ jets
$A_{ m F B}(\%)$	9.2 ± 3.7	12.2 ± 4.3	-3.0 ± 7.9
MC@NLO $A_{\rm FB}$ (%)	$2.4{\pm}0.7$	$3.9{\pm}0.8$	-2.9 ± 1.1

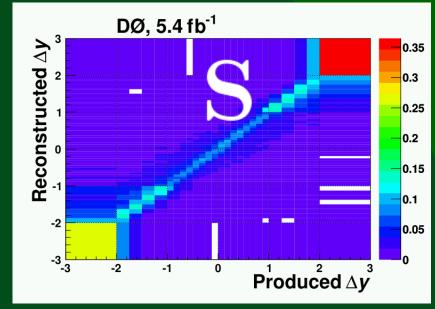
Was central to previous DØ results

Inconvenient - can't compare directly to calculations


• but possible, see PRL **100**, 142002 (2008), and PRD **83**, (2011) 114027 Z9/9/2011 Amnon Harel

Amnon Hare

lop11


Unfolding

4 bin unfolding. Δy edges: -3,-1,0,1,3 $\vec{n}_{parton} = \mathbf{A}^{-1} \mathbf{S}^{-1} (\vec{n}_{data} - \vec{n}_{bkg})$ Acceptance matrix (diagonal) Migration matrix

29/9/2011

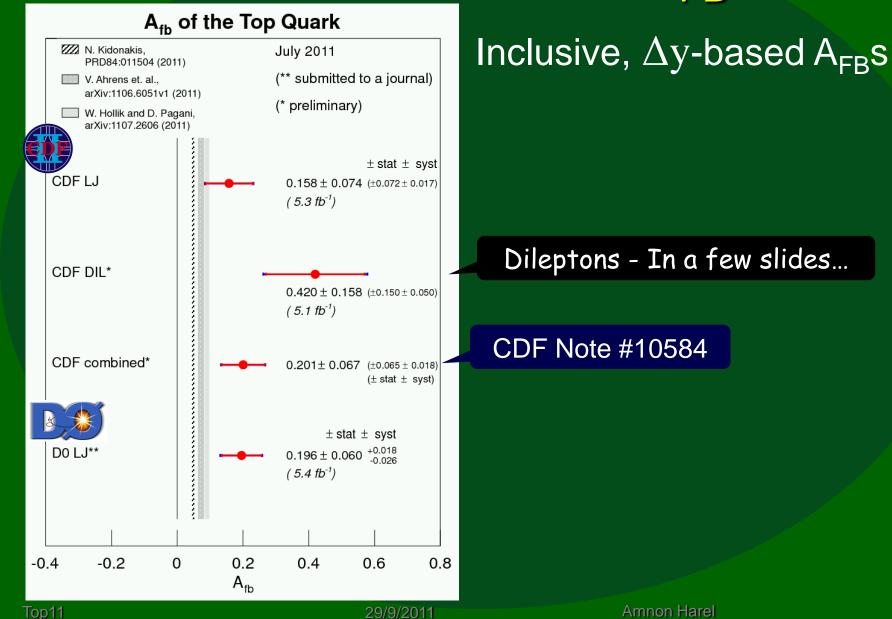
50→26 bin regularized unfolding • extended TUnfold for variable binning Improves statistical strength

- expected (if BSM)
- and observed (1.9SD \rightarrow 2.4SD)

Amnon Harel

Fine-bin unfolding

- Binning is crucial to unfolding (an implicit regularization)
- Narrow bins near $\Delta y=0$ boundary to fully describe migrations
- Wide bins at high $|\Delta y|$ due to limited MC statistics
- Regularization term based on continuous curvature of density
- Curvature → sum of absolute value of discrete 2nd derivative
- Density = diff. x-sec rather than bin counts \rightarrow need to account for bin widths

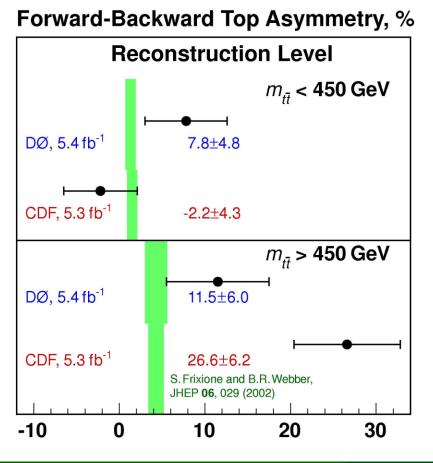

Regularization strength *balances*

- statistical strength
- bias we correct for bias on A_{FB}, but it's still an issue since...

Bias is model dependent

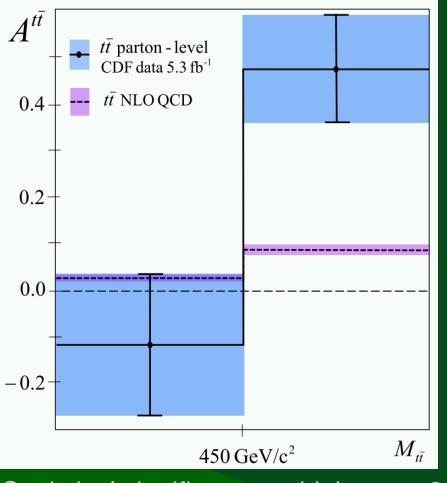
- Examines dozens of generator-level distributions (i.e. alternative models)
- Systematic uncertainties cover all realistic cases
- To invalidate systematic uncertainties: sharp bin-to-bin jumps.
 - 26 generator level bins...
 - s-channel narrow resonances have sharp edges but already ruled out (Tuesday)

Production-level A_{FB}s



Mass dependence – det. level

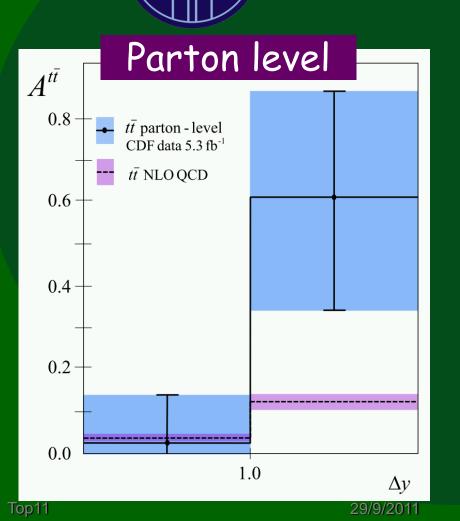
BSM contributions to AFB will change its dependence on $m_{t\bar{t}}$


- BSM contributions often through BSM+SM interference
- CDF introduced cut at $m_{tar{t}}=450\,{
 m GeV}$, cut value optimized on MC

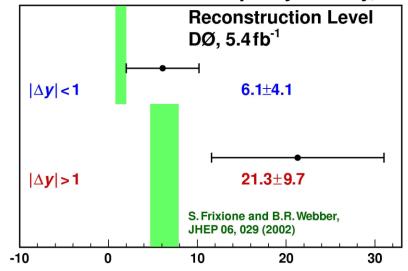
29/9/2011

CDF di-lepton data also suggests a mass dependence: $\Delta A_{\rm FB}^{\rm raw} = (11\pm12)\%$

Mass dependence – CDF prod. Having observed a mass dependence, CDF reports also at production level. 4 bin unfolding


A 3 σ discrepancy: $A_{FB} = (48 \pm 11 \text{ (total)})\%$ vs. $A_{FB}^{MCFM} = (9 \pm 1)\%$ \rightarrow lots excitement and it's at high mass

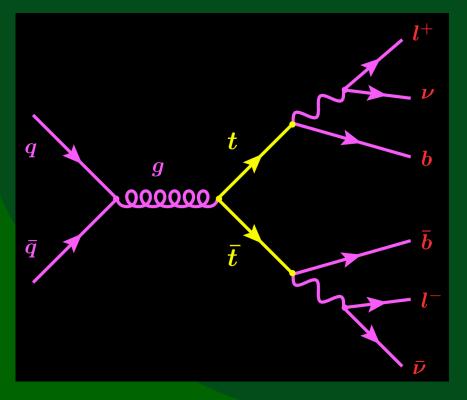
 \rightarrow lots of BSM papers


Statistical significance at high mass 3.4 SD – not enhanced by unfolding Z9/9/2011 Amnon Harel

|\Delta y| dependence

Forward-Backward Top Asymmetry, %

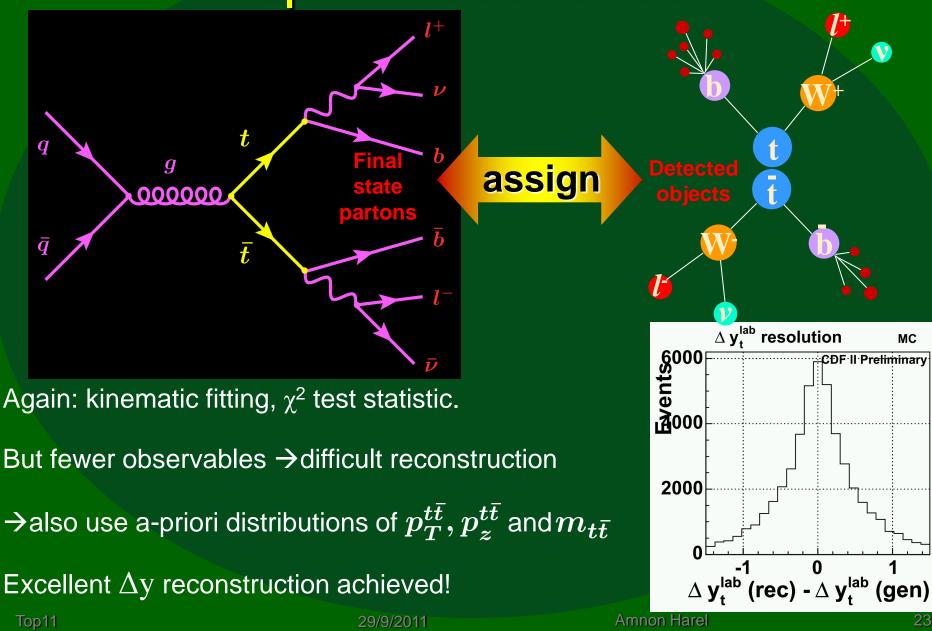
Amnon Hare


di-lepton

Di-lepton selection

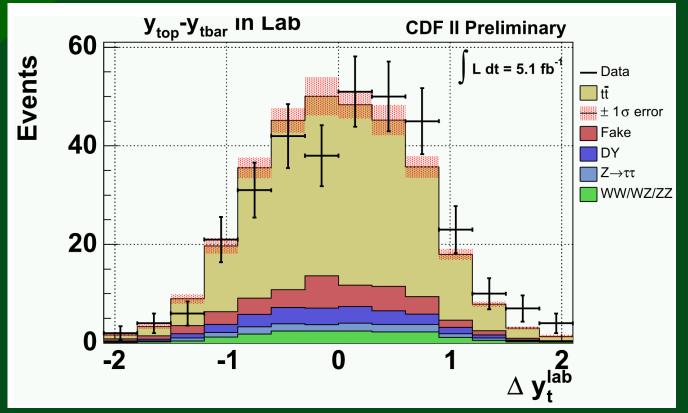
CDF note 10436

 $\int \mathcal{L} dt = 5.1 \, \mathrm{fb}^{-1}$


Require:

- 2 lepton with $E_T \ge 20$ GeV,
 - $|\eta_e| < 1.1$ or $1.2 < |\eta_e| < 2.8$, $|\eta_\mu| < 1.1$
- p_T imbalance (MET) > 25 or 50 GeV
 - depending on angular separation
- \geq 2 jets with $E_T \geq$ 15 GeV, $|\eta| < 2.5$
- H_T>200 GeV
 - scalar sum: lepton, jet ETs + MET

29/9/2011


di-lepton

Di-lepton reconstruction

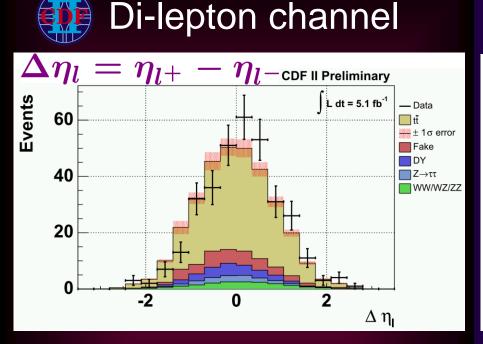
di-lepton

A_{FB} in dileptons

A_{FB} extracted in two steps:

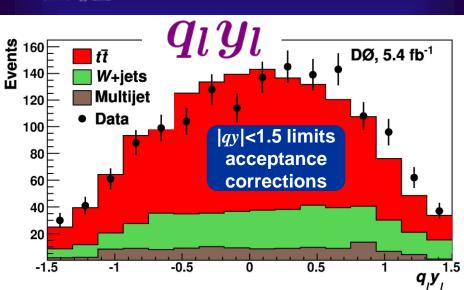
1. Background subtraction: $A_{
m FB}^{
m raw} = (14\pm5)\,\%
ightarrow A_{
m FB}^{
m sub} = (21\pm7)\,\%$

2. Assume A_{FB} is linear in Δy , to find $A_{FB} = (42 \pm 15 \text{ (stat)} \pm 4 \text{ (syst)})\%$


- Validated for Pythia, NLO QCD, axigluon models
- 2.6 σ from zero, 2.3 σ from prediction (A_{FB}=6%)

Amnon Harel

Lepton-based $A_{FB}S$ New angular variables \rightarrow new $A_{FB}S$


Lepton based \rightarrow Excellent resolution \rightarrow Simple unfolding & interpretation

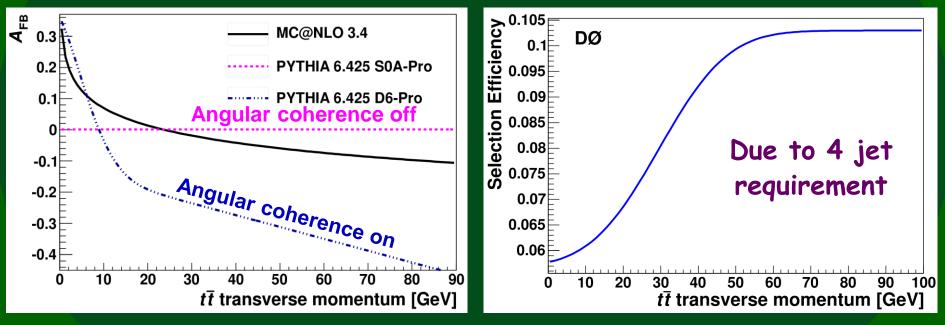
• Sensitive to the top pair A_{FB} and their polarization, but less sensitive to θ^*

Almost the same numbers:

$$A_{
m FB}^{
m raw} = (14\pm5)\,\% o A_{
m FB}^{
m sub} = (21\pm7)\,\%$$

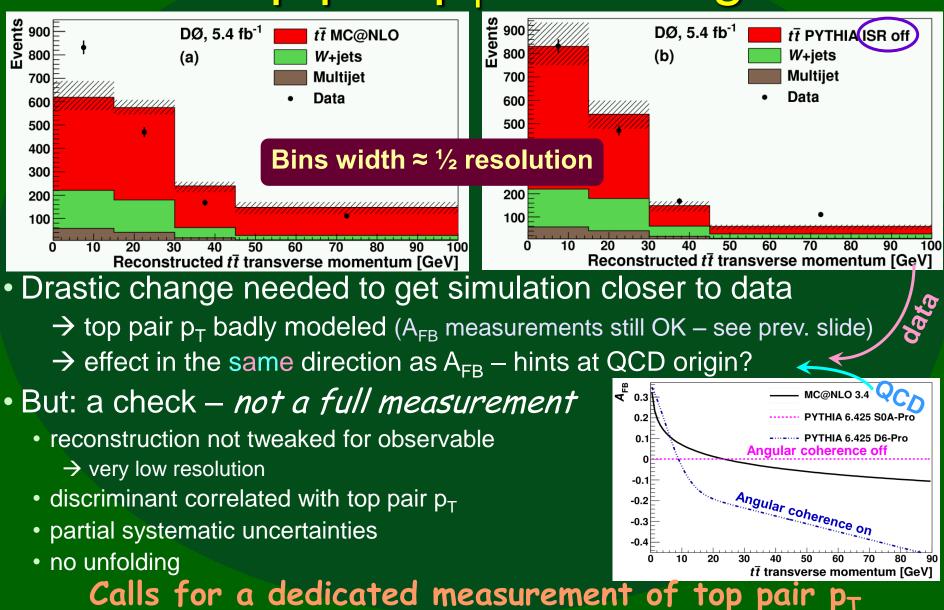
l+jets channel

	$l+\geq 4$ jets	l+4 jets	$l+\geq 5$ jets
$A^l_{ m FB}$ (%)	14.2 ± 3.8	15.9 ± 4.3	$7.0\pm$ 8.0
MC@NLO A_{FB}^{l} (%)	$0.8\pm$ 0.6	$2.1{\pm}~0.6$	-3.8 ± 1.2


>3σ away from MC@NLO

l+*jets* Hadronic-top based A_{FB} New angular variables \rightarrow new $A_{FB}s$ flavor tag Use only the "hadronic" top \rightarrow Better resolution \rightarrow more stable unfolding Events 009 $A = 0.073 \pm 0.028$ ata reco $A = 0.110 \pm 0.036$ tt Signal 500 tł Parton $A = 0.150 \pm 0.050$ production level $A = -0.007 \pm 0$ tt Pythia 400 300 $\mathbf{C}\mathbf{F}\mathbf{M}$ 200 = 3.8%100 Sensitive to collision frame's boost Superior resolution compensates -<u>0</u> -2 -1.5 -1 -0.5 0 0.5 1.5 2 Observed less mass dependence $-qy_{h} = y_{h}^{p\overline{p}}$ 29/9/2011

A related observable



- Noted: $A_{ ext{FB}} \leftrightarrow p_T^{tt}$
- Is gluon radiation the same in forward an backward events?
 experimental constraints are few and indirect

- If correlation exists, backward events selected more often than forward events
- One of the leading systematic uncertainties
 - newly identified \rightarrow conservative estimate by turning dependence off \rightarrow -1.6%(absolute)
 - all measurements are statistics dominated → will not invalidate any measurement 29/9/2011 Amnon Harel 2

Top pair p_T modeling

Amnon Hare

29/9/2011

28

Conclusions

- Several "top forward backward asymmetries" measured
 - they are all very correlated
- Deviations from SM predictions of ~2-3σ
- Two > 3σ differences:
 - 1) CDF: *l*+jets, high mass, Δy-based
 - exciting as indicates BSM
 - but mass dependence is marginal in DØ data
 - 2) DØ: *l*+jets, inclusive, lepton-based
 - but less sensitive to most BSM scenarios than Δy -based A_{FB}

l+*jets*

Conclusions

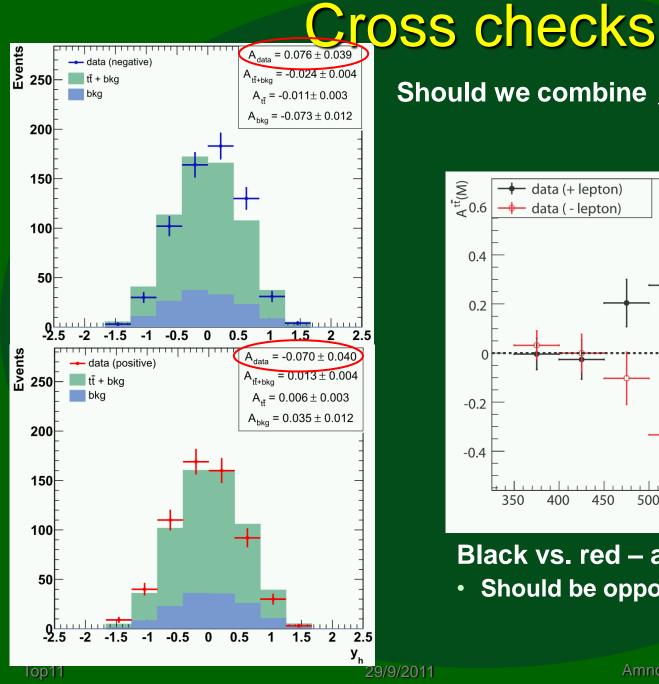
- Several "top forward backward asymmetries" measured
 - they are all very correlated
- Deviations from SM predictions of ~2-3σ
- Two > 3σ differences:
 - 1) CDF: *l*+jets, high mass, Δy-based
 - exciting as indicates BSM
 - but mass dependence is marginal in DØ data
 - 2) DØ: l+jets, inclusive, lepton-based
 - but less sensitive to most BSM scenarios than Δy -based A_{FB}
- SM predictions creeping upwards?
 - combining CDF & DØ on the back of an envelop: tension with LO prediction >3σ, but with Hollik & Pagani <3σ

29/9/2011

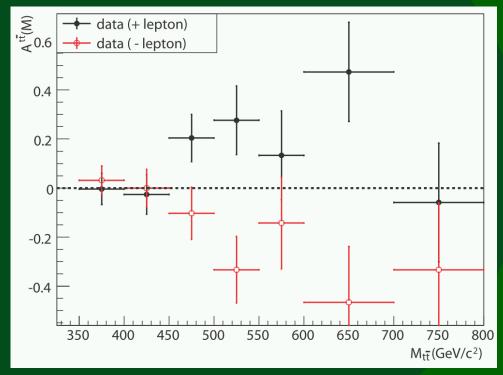
Stay tuned!

- More data on the way
- More channels
- Analysis improvements?

Homework assignment:


Cook up a BSM scenario where the CDF di-lepton result supports both 1&2

Amnon Hare

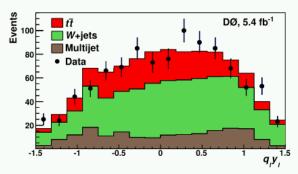

Top11

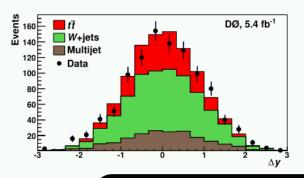
l+*jets*

Back up slides

Should we combine A_{FR}^{t} and A_{FR}^{t} ?

Black vs. red – a check of CP violation Should be opposite in this presentation


Cross checks



Cross checks

l+*jets*

- Simultaneously measured $A_{\rm FB}$ for $t\bar{t}$ and W+jets
 - ▶ Also included events with 0 b-tags
 - Measured $A_{\rm FB}$ for W+jets in good agreement with simulation

- Checked $A_{\rm FB}$ by solenoid and toroid polarities
 - ▶ Found no significant dependence
- Checked $A_{\rm FB}$ by lepton charge
 - ▶ Found no significant dependence
- Good agreement between e+jets and μ +jets

CDF data (no bkg. sub.)

selection	$A^{ ext{t}}$	$A^{\mathrm{p}\bar{\mathrm{p}}}$
inclusive	0.057 ± 0.028	0.073 ± 0.028
electrons	0.026 ± 0.037	0.053 ± 0.037
muons	0.105 ± 0.043	0.099 ± 0.043
single b -tags	0.058 ± 0.031	0.095 ± 0.032
double b -tags	0.053 ± 0.059	-0.004 ± 0.060

More on unfolding

- Binning is crucial to unfolding (an implicit regularization)
- Narrow bins near $\Delta y=0$ boundary to fully describe migrations
- Wide bins at high |Δy| due to limited MC statistics
- Regularization term based on continuous curvature of density
- Curvature → sum of absolute value of discrete 2nd derivative
- Density = diff. x-sec rather than bin counts \rightarrow need to account for bin widths introduced functionality into TUnfold

Regularization strength *balances*

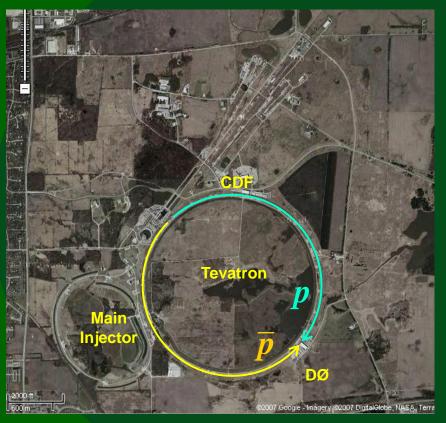
- statistical strength
- bias we correct for bias on A_{FB}, but it's still an issue since...

Bias is model dependent

- Examines dozens of generator-level distributions (i.e. alternative models)
- Systematic uncertainties cover all realistic cases
- To invalidate systematic uncertainties: sharp bin-to-bin jumps.

29/9/2011

- 26 generator level bins...
- s-channel narrow resonances have sharp edges but already rules out (Tuesday) Amnon Harel


	$l+\geq 4$ jets	$e+\geq 4$ jets	$\mu + \geq 4$ jets	l+4 jets	$l+\geq 5$ jets
Raw $N_{\Delta y > 0}$	849	455	394	717	132
Raw $N_{\Delta y < 0}$	732	397	335	597	135
$N_{tar{t}}$	1126 ± 39	622 ± 28	502 ± 28	902 ± 36	218 ± 16
N_W	376 ± 39	173 ± 28	219 ± 27	$346{\pm}36$	35 ± 16
$N_{ m MJ}$	79 ± 5	56 ± 3	8 ± 2	66 ± 4	13 ± 2
$A_{ m FB}(\%)$	9.2 ± 3.7	$8.9 {\pm} 5.0$	9.1 ± 5.8	12.2 ± 4.3	-3.0 ± 7.9
mc@nlo A_{FB} (%)	$2.4{\pm}0.7$	$2.4 {\pm} 0.7$	$2.5 {\pm} 0.9$	$3.9{\pm}0.8$	-2.9 ± 1.1

	$l+\geq 4$ jets	$e+\geq 4$ jets	$\mu + \geq 4$ jets	l+4 jets	$l+\geq 5$ jets
Raw $N_{q \cdot y_l > 0}$	867	485	382	730	137
Raw $N_{q \cdot y_l < 0}$	665	367	298	546	119
$A^l_{ m FB}~(\%)$	14.2 ± 3.8	$16.5{\pm}~4.9$	$9.8\pm$ 5.9	15.9 ± 4.3	$7.0\pm$ 8.0
mc@nlo $A_{ m FB}^l$ (%)	$0.8\pm$ 0.6	$0.7\pm~0.6$	1.0 ± 0.8	$2.1{\pm}~0.6$	-3.8 ± 1.2

29/9/201

Experimental Apparatus

Fermilab Tevatron Collider

The collisions

- *pp*
- *E_{c.m.}*= 1.96TeV

29/9/2011

The detectors

General purpose detectors Top physics relies on tracking, calorimetry and muon detectors.

Amnon Harel

Unfolding A_{FB} is easy

Starting at the end: can check whether the unfolding works well
by examining several SM MCs and viable BSM scenarios.
same wide-bin unfolding works for all viable models
bias from regularized unfolding (a-priori "smoothing") can be quantified

BTW: in both cases, narrow resonances would have spoiled everything.

Typical unfolding

How much distortion is acceptable?

Showing a distribution \rightarrow what bin errors?

- correlations are important
- statistical scatter vs. hypothesis testing

What additional information to supply?

Opinions differ.

I refer discussion to:

PHYSTAT 2011 Workshop at CERN, Geneva

17-20 January 2011

http://indico.cern.ch/event/phystat2011

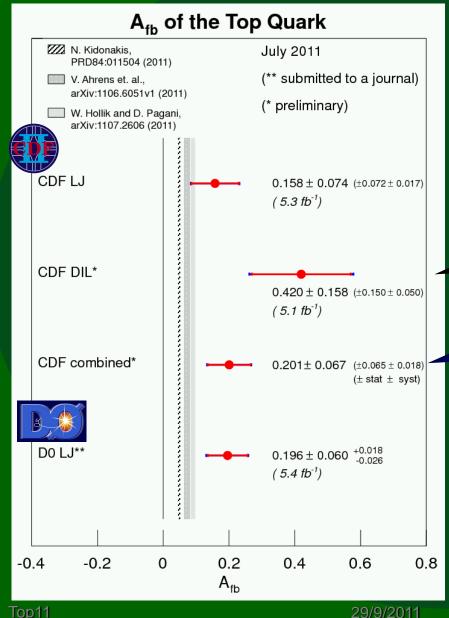
Top11

29/9/2011

Unfolding for A_{FB}

Compare to $stat(A_{FB})$

Not showing distribution A_{FB} is a summary


None needed

Details on DØ unfolding in other slide

Amnon Harel

Production-level A_{FB}s

Inclusive, Δy -based $A_{FB}s$

 $A_{\rm FB} = (16 \pm 7.0 \, ({\rm stat}) \pm 2 \, ({\rm syst}))\%$

Dileptons - In a few slides...

CDF Note #10584

 $A_{\rm FB} = \left(19.6 \pm 6.0 \,(\text{stat})^{+1.8}_{-2.6} \,(\text{syst})\right)\%$

Amnon Harel

Production-level A_{FB}s

l+jets

$A_{\rm FB} = (16 \pm 7.0 \,({\rm stat}) \pm 2 \,({\rm syst}))\%$

$A_{\rm FB} = \left(19.6 \pm 6.0 \,(\text{stat})^{+1.8}_{-2.6} \,(\text{syst})\right)\%$

29/9/2011

Amnon Harel