



# NP Limits from Kaon Decays

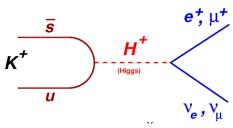
Giuseppe Ruggiero (CERN) FPCP 2011, Isreal, 26/05/2011

On behalf of the NA48-NA62 collaborations

Giuseppe Ruggiero - FPCP 2011-26/05/2011



# Outline


- × New Physics and K decays.
- **×** Test of lepton flavour universality with NA62 @ CERN.
- ★ Studies of lepton number violation with NA48/2 @ CERN.
- ★ The future of Kaon physics with NA62.



# $P^+ \rightarrow l^+ \nu$ Decays and Sensitivity to NP

- SM:  $\Gamma(P^+ \to l^+ \nu) = \frac{G_F^2 M_P M_l^2}{8\pi} \left(1 \frac{M_l^2}{M_P^2}\right)^2 f_P^2 |V_{qq'}|^2 \kappa^{-\frac{3}{4}}$
- Beyond SM [PRD 48 (1993) 2342; Prog. Theor. Phys. 111 (2004) 295]:
  - Models with 2 Higgs doublets (e.g. 2HDM-II MSSM)
    - Sizeable effects at tree-level correction:  $\Delta\Gamma/\Gamma_{SM}$  proportional to  $\tan^2\beta$  and to  $(m_{P+}/m_{H+})^2$ .
  - Examples of possible theoretical deviations  $(\Delta\Gamma/\Gamma_{SM})$ :  $(m_{H^+} = 500 \text{ GeV/c}^2, \tan\beta = 40)$ 
    - $\pi^+ \rightarrow l^+ \nu -2x10^{-4}, K^+ \rightarrow l^+ \nu -0.3\%$
    - $D_{s}^{+} \rightarrow l^{+}\nu 0.4\%$ ,  $B^{+} \rightarrow l^{+}\nu 30\%$
- Best experimental limits [PRD82 (2010) 073012; Barlow, CKM2010]:
  - $Br(B^+ \rightarrow \tau^+ \nu)_{exp} = (1.64 \pm 0.34) \times 10^{-4}$  [HFAG]
  - About 3σ discrepancy between measured value and preferred one from global CKM fit [UTfit, CKMfitter, ICHEP2010].





 $W^{+}$ 

II

e<sup>+</sup>, μ<sup>+</sup>

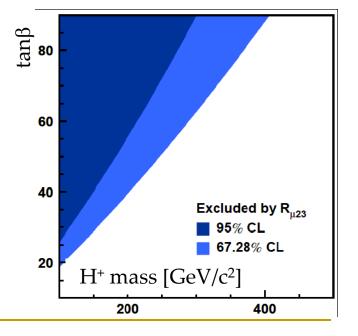
 $v_{\rho}, v_{\mu}$ 



# $K^+ \rightarrow \mu^+ \nu$ Sensitivity to NP [EPJ C69 (2010) 399]

# • Quantity: $R_{\mu 23} = \left(\frac{f_K/f_\pi}{f_+(0)}\right)^{-1} \left(\left|\frac{V_{us}}{V_{ud}}\right| \frac{f_K}{f_\pi}\right)_{\mu 2} \frac{|V_{ud}|_{0^+ \to 0^+}}{[|V_{us}|f_+(0)]_{\ell 3}}$

1.


- Lattice QCD
- 2. Extracted from BR(K<sup>+</sup> $\rightarrow \mu^+ \nu$ ) measurement (permille precision) [KLOE]
- 3. Extracted from BR(K $\rightarrow \pi l\nu$ ) measurements (<1% precision) [KLOE, NA48,KTeV]
- 4. Average from nuclear  $\beta$  decays [PRC 79 (2009) 055502]

### • Theoretical expectations:

- **SM:**  $R_{\mu 23} = 1$
- Beyond SM: charged Higgs tree level current.

$$R_{\mu 23} \approx \left| 1 - \frac{m_{K^+}^2}{m_{H^+}^2} \frac{\tan^2 \beta}{1 + \epsilon_0 \tan \beta} \right|$$

- Experimental result:
  - $R_{\mu 23} = 0.999(7)$
  - Exclusion limits in  $m_{H^+}$  /tan $\beta$  plane





$$\mathbf{R}_{K} = \Gamma(K^{+} \rightarrow e^{+}v) / \Gamma(K^{+} \rightarrow \mu^{+}v): \text{Theory}$$
  
• SM: 
$$R_{K} = \frac{\Gamma(K^{\pm} \rightarrow e^{\pm}v)}{\Gamma(K^{\pm} \rightarrow \mu^{\pm}v)} = \frac{m_{e}^{2}}{m_{\mu}^{2}} \cdot \left(\frac{m_{K}^{2} - m_{e}^{2}}{m_{K}^{2} - m_{\mu}^{2}}\right)^{2} \cdot \left(1 + \delta R_{K}^{\text{rad.corr.}}\right) \quad \kappa^{\downarrow}$$

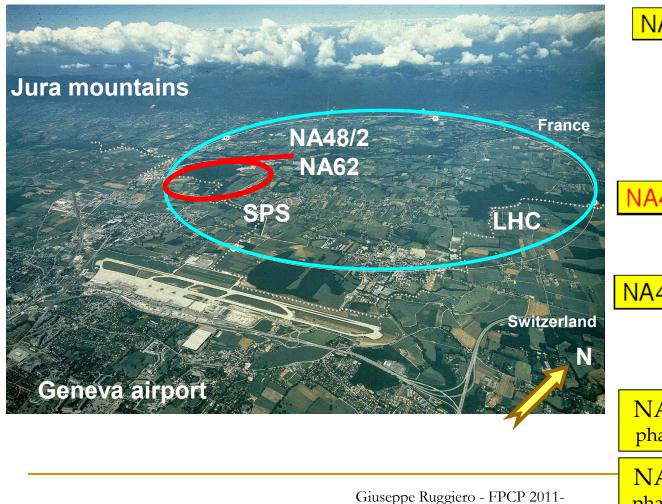
• Prediction:  $R_{K} = (2.477 \pm 0.001) \times 10^{-5}$  [Phys. Lett. 99 (2007) 231801]

- **×** Hadronic uncertainties cancel in the ratio.
- **×** Strong helicity suppression.
- **\*** Radiative correction (few %) due to  $K \rightarrow ev\gamma$  (IB) included by definition in  $R_K$
- Beyond SM:
  - Model with 2 Higgs doublets (e.g. 2HDM-II MSSM) and LFV sources in the right-handed slepton sector [PRD 76 (2006) 011701 ].
    - Potentially sizeable effects at 1-loop level at large  $tan\beta$  (no effect at tree level)

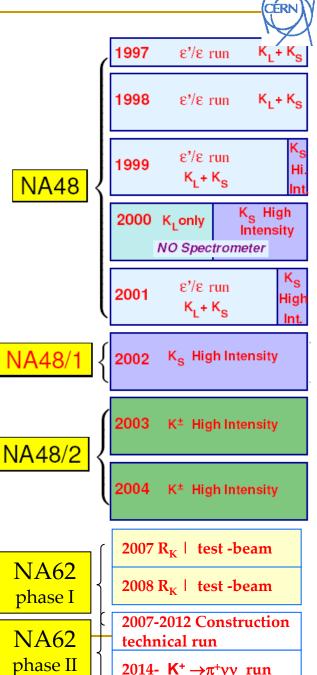
- Sensitivity: up to % level after tuning of the parameters: experimentally accessible
- Higher enhancement in B sector , but experimentally challenging



e<sup>+</sup>


# **R<sub>K</sub>: Experiments**

- PDG '08 [1970s measurement]:  $R_{\rm K} = (2.45 \pm 0.11) \times 10^{-5}$ 
  - $\delta R_K / R_K = 4.5\%$
- KLOE [Eur. Phys, J. C 65 (2010) 703]:  $R_{K} = (2.493 \pm 0.031) \times 10^{-5}$ 
  - Data collected in 2001-2005
  - $13.8 \times 10^3$  K  $\rightarrow$  ev decays and 16% background
  - $\delta R_K / R_K = 1.3\%$
- NA62 (phase I):
  - Dedicated 4 months data taking in 2007
  - Goals:
    - 1.  $150 \times 10^3 \text{ K} \rightarrow \text{ev decays}$
    - 2. <10% background






# NA48 – NA62 Experiments (a) CERN SPS



26/05/2011





# NA48/2 – NA62 Beam Line and Detector

#### Simultaneus K<sup>±</sup> beams: Muon veto sytem Hadron calorimeter $P_{\rm K} = 60 \pm 3 \text{ GeV/c} (NA48/2)$ Liquid krypton calorimeter Hodoscope $P_{\rm K} = 75 \pm 2 \, {\rm GeV/c} \, ({\rm NA62})$ ٩ Drift chamber 4 Anti counter 7 Helium tank **TAX 17** FDFD Final **TAX 18** collimator Drift chamber 3 Defining Protecting collimators collimator Magnet Cleaning KABES 1 collimator Drift chamber 2 Anti counter 6 KABES 3 Narrow-band K<sup>+</sup>K beam 0.36 mrad Target Drift chamber 1 К <sup>†</sup> KABES 2 Kevlar window DEDE Quadrupole 2nd FRONT-END ACHROMAT Quadruplet ACHROMAT

- Detectors:
  - Magnetic Spectrometer:
    - $\sigma(P)/P = 1.0\% \oplus 0.044 P(GeV/c)\% (NA48/2)$
    - $\sigma(P)/P = 0.48\% \oplus 0.009 P(GeV/c)\%$  (NA62 phase-I)
  - Hodoscope: Fast trigger for charged particles and timing for the event ( $\sigma(t) = 200 \text{ ps}$ )
  - Liquid Kripton e.m. calorimeter (LKr):  $\sigma(E)/E = 3.2\%/\sqrt{E \oplus 90}$  MeV/E  $\oplus 0.42\%$



# **R<sub>K</sub>: NA62 Measurement Strategy**

- $K^+ \rightarrow e^+ v (K_{e2})$ ,  $K^+ \rightarrow \mu^+ v (K_{\mu 2})$  collected simultaneously:
  - No dependence on K flux
  - Cancellation of several effects at first order

$$R_{K} = \frac{N(K_{e2}) - N_{B}(K_{e2})}{N(K_{\mu 2}) - N_{B}(K_{\mu 2})} \frac{A(K_{e2}) \times f_{\mu} \times \varepsilon(K_{\mu 2})}{A(K_{\mu 2}) \times f_{e} \times \varepsilon(K_{e2})} \frac{1}{f_{LKr}} \frac{1}{D}$$

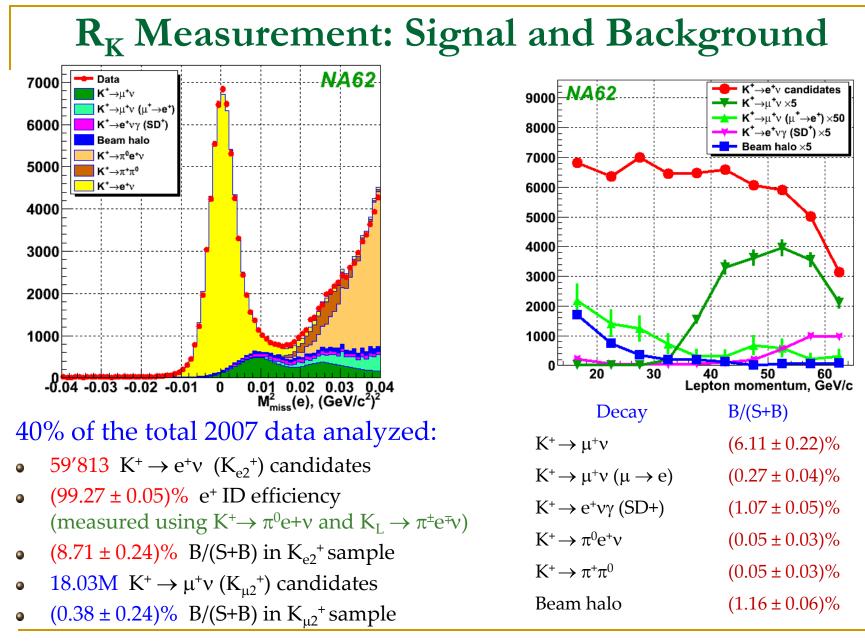
- $N(K_{e2})$ ,  $N(K_{\mu 2})$  : selected candidates
- $N_B(K_{e2})$ ,  $N_B(K_{\mu 2})$  : background, evaluated with data and/or MC
- $A(K_{e2})$ ,  $A(K_{\mu 2})$ : geometrical acceptance (MC), track reconstruction efficiency (MC/data)
- $f_{e}$ ,  $f_{\mu}$ : particle ID efficiency, evaluated with data
- $\varepsilon(K_{12})$ : trigger efficiency, evaluated with data
- f<sub>LKr</sub> : global e.m. calorimetric inefficiency, evaluated with data
- **D** : downscaling factor of  $K_{\mu 2}$ , evaluated with data
- Analysis in 10 lepton momentum bins.



# $R_K$ Measurement: $K_{e2}$ and $K_{\mu 2}$ Selection

#### • Common selection criteria:

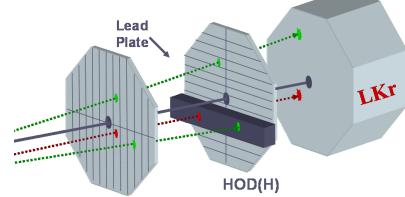
- $< P_K >$  reconstructed from  $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ .
- 1 track in the acceptance of the subdetectors downstream.
- Decay vertex in the fiducial region upstream.
- Photon veto using LKr downstream.
- Kinematic separation:
  - $M_{miss}^2 = (P_K P_l)^2$  (e<sup>+</sup> hypothesis)


#### M<sup>2</sup><sub>miss</sub> (GeV/c<sup>2</sup>)<sup>2</sup> 7000 Data Electron mass hypothesis! $10^{7}$ e<sup>+</sup>: (0.9 to 0.95) < E/P < 1.1 Data $\pi^+$ : E/P < 0.85 10<sup>6</sup> Ku2 10<sup>5</sup> **Electrons** 0.02 Muons 10<sup>4</sup> Ke2 0 10<sup>3</sup> 10<sup>2</sup> -0.02 10 20 70 0.2 0.4 0.6 0.8 1.2 0 1 Track momentum (GeV/c) E/p: Energy/Track momentum

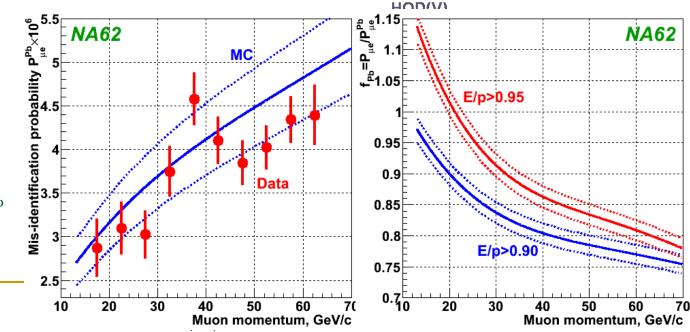


Giuseppe Ruggiero - FPCP 2011-26/05/2011

#### • Lepton identification:

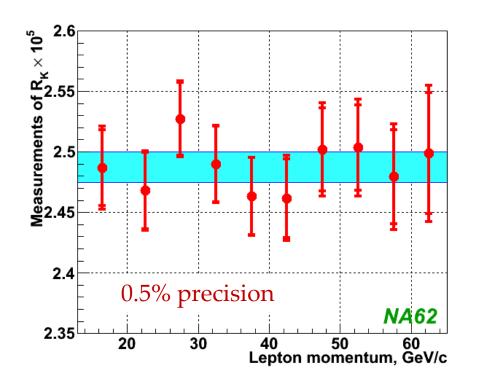

• E/P = ratio between LKr energy deposit and track momentum measured with the spectrometer




NA62 👌

# **R**<sub>K</sub> Measurement: Background Analysis

- $K^+ \rightarrow \mu^+ \nu$  background in  $K_{e2}^+$ : source
  - $\mu$  catastrophic energy loss in LKr by emission of a bremmstrahlung v: P =  $3x10^{-6}$
- $K^+ \rightarrow \mu^+ \nu$  background in  $K_{e2}^+$ : measurement
  - Lead plate in front of LKr (9.2X<sub>0</sub>, 20% total area) in order to provide pure μ sample in the LKr.
  - $P_{\mu e}$  measured on the selected pure  $\mu$  sample
  - $P_{\mu e}$  corrected with Geant4 MC for  $\mu$  energy loss and bremmstrahlung in the lead plate.




- Result:
  - $B/(S+B) = (6.11\pm0.22)\%$ 
    - Uncertainty 3 times smaller than using MC only
    - $(\delta P_{\mu e}/P_{\mu e})_{MC} \sim 10\%$
    - $(\delta f_{Pb}/f_{Pb})_{MC} \sim 2\%$





# **R**<sub>K</sub> Measurement: Final Result



•  $R_{K} = (2.487 \pm 0.011_{stat.} \pm 0.007_{syst.}) \times 10^{-5}$ = (2.487 ± 0.013) × 10^{-5}

[Phys. Lett. B 698 (2011) 105]

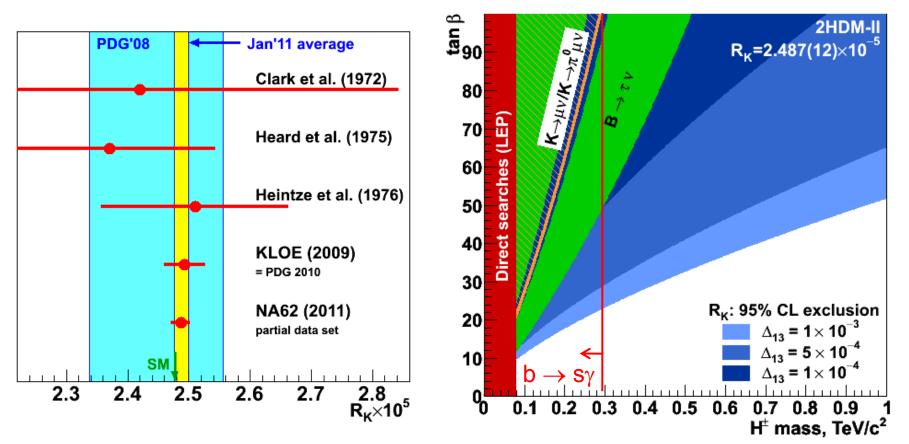
|                                                                            | _                        |
|----------------------------------------------------------------------------|--------------------------|
| Source                                                                     | $\delta R_{K} x 10^{-5}$ |
| Statistical                                                                | 0.011                    |
| K <sub>µ2</sub> background                                                 | 0.005                    |
| $K^+ \rightarrow e^+ \nu \gamma \text{ (SD+) background}$                  | 0.001                    |
| $K^+ \rightarrow \pi^0 e^+ \nu$ , $K^+ \rightarrow \pi^+ \pi^0$ background | 0.001                    |
| Beam halo background                                                       | 0.001                    |
| Helium purity                                                              | 0.003                    |
| Acceptance correction                                                      | 0.002                    |
| Spectrometer alignment                                                     | 0.001                    |
| Positron ID efficiency                                                     | 0.001                    |

**Uncertainties** 

- 1-track trigger efficiency 0.002
- LKr readout inefficiency 0.001
- Total



0.013

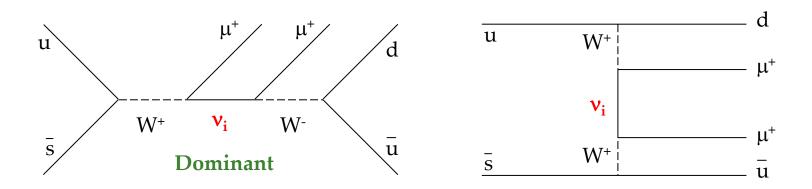

# **R**<sub>K</sub> Measurement: Discussion

0

Limits within 2HDM-II (with LFV)

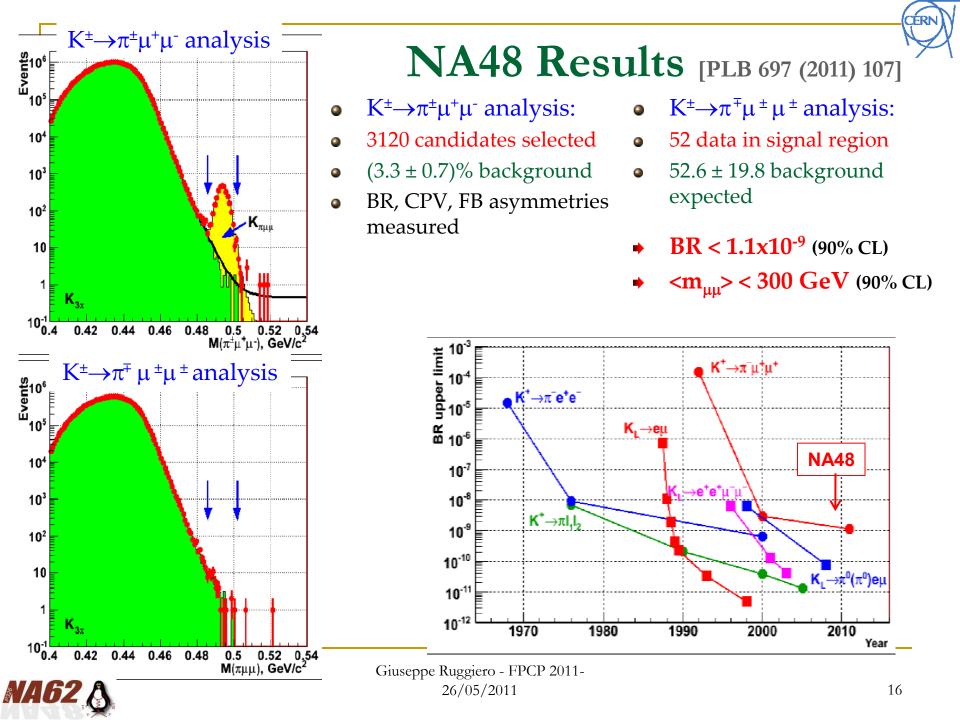
see also PRD 82 (2010) 073012

- World average:
  - $R_{\rm K} = (2.487 \pm 0.012) \times 10^{-5}$



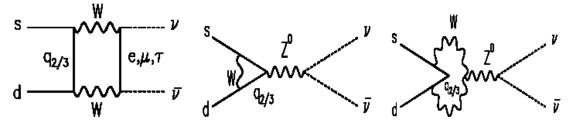




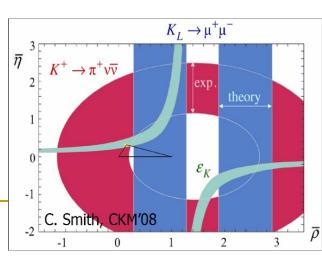


# Lepton Number Violation: $K^+ \rightarrow \pi^- \mu^+ \mu^+, K^- \rightarrow \pi^+ \mu^- \mu^-$

- $|\Delta L| = 2$  process
- Possible only if the v is a Majorana particle (similar to the neutrinoless double  $\beta$  decay)
- Sensitive to the effective Majorana neutrino mass:  $BR = 10^{-8} (\langle m_{\mu\mu} \rangle / TeV)^2$ [ PLB 479 (1000) 33; PRB 491 (2000) 285 ]




- Experiments:
- BNL E865: BR(  $K^+ \rightarrow \pi^- \mu^+ \mu^+$ ) < 3x10<sup>-9</sup> [PRL 85 (2000) 2877]
- NA48/2: 8 times larger statistics



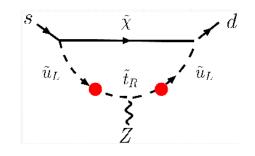


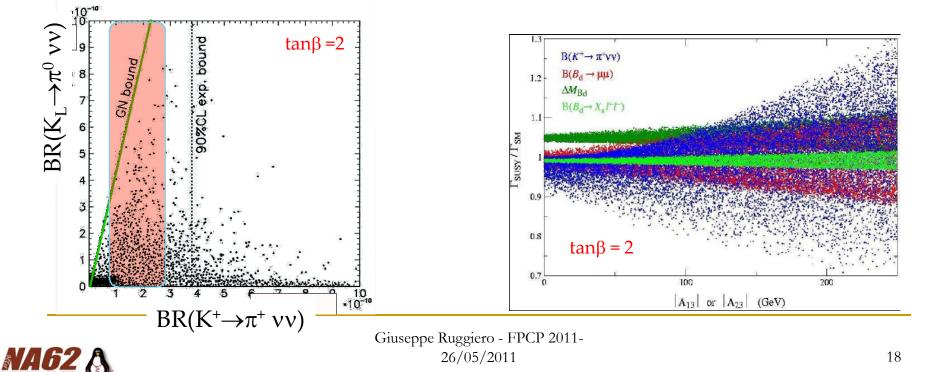

## The K $\rightarrow \pi v \bar{v}$ decays: a theoretical clean environment

• FCNC loop processes:  $s \rightarrow d$  coupling and highest CKM suppression

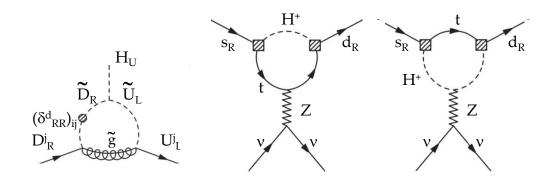


- Very clean theoretically: SD contributions dominate, hadronic matrix element can be related to measured quantites.
- BR proportional to  $|V_{ts}^*V_{td}|^2$
- SM predictions [Brod, Gorbahn, Stamou, arXiv:10009.0947]:
  - BR(K<sup>+</sup> $\rightarrow \pi^+ \nu \bar{\nu}$ ) = (7.81 ± 0.75 ± 0.29)×10<sup>-11</sup>
  - BR( $K_L \rightarrow \pi^0 \nu \bar{\nu}$ ) = (2.43 ± 0.39 ± 0.06)×10<sup>-11</sup>
- Experimental results:
  - BR(K<sup>+</sup> $\rightarrow \pi^+ \nu \bar{\nu}) = (1.73 + 1.15) \times 10^{-10} [E787, E959]$
  - $BR(K_L \rightarrow \pi_0 v v) < 2.6 \times 10^{-8}$  [E391a]

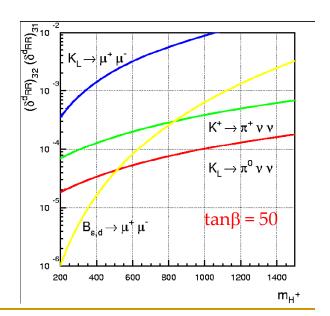



Giuseppe Ruggiero - FPCP 2011-26/05/2011


# NP in $K \rightarrow \pi v \bar{v}$ : MSSM with non-MFV breaking terms [JHEP 08 (2006) 064, NP B 714 (2005) 103]

- Contribution from chargino/squark loops.
- Small  $tan\beta$  scenario.
- Non-MFV in up-squarks trilinear terms.
- **\*** Maximal effects in  $K \rightarrow \pi v \bar{v}$  decays
- × Relatively slow decoupling  $(m^{-2}_{SUSY})$






# NP in K→πνν̄: MSSM with non-MFV breaking terms [PRD 73 (2006) 055017]



- Contribution from charged-Higgs/top quark loops at 3-loop level in standard loop expansion.
- Large tanβ scenario.
- Non-MFV RR soft-breaking terms.
- Strong limits already assuming 10% SM BR variation.
- **×** Slow decoupling with the charged-Higgs mass.





Giuseppe Ruggiero - FPCP 2011-26/05/2011

# The NA62 Experiment for $K \rightarrow \pi \nu \overline{\nu}$ : Goals

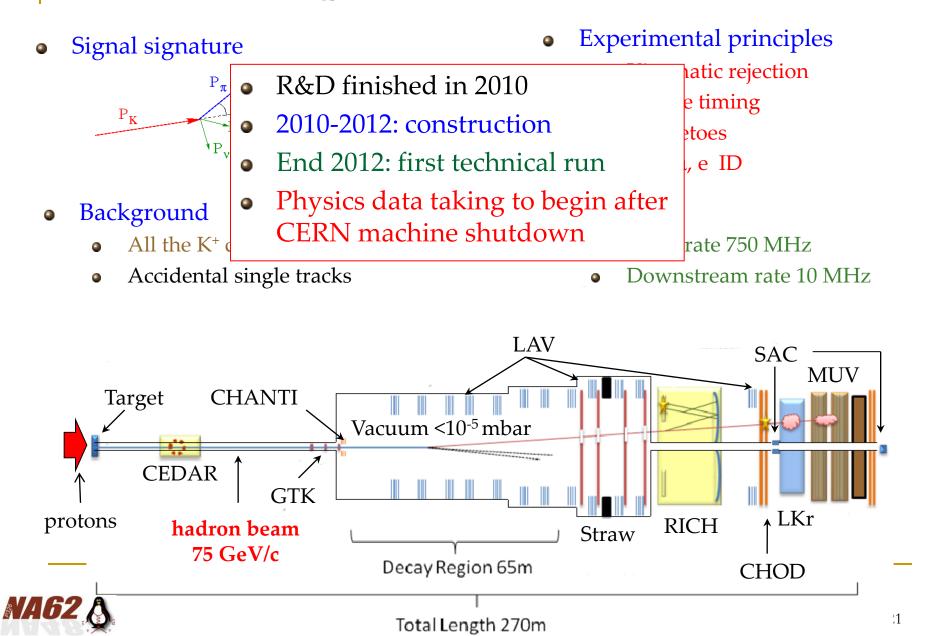
- **Goal:** 10% precision branching ratio measurement of  $K^+ \rightarrow \pi^+ \nu \nu$ 
  - O(100) SM K<sup>+</sup>→π<sup>+</sup>νν<sup>-</sup> events
     (2 years of data taking)
- Requirements
  - Statistics:
    - BR(SM) ~  $8 \times 10^{-11}$
    - Acceptance: ~ 10%
    - K decays (2 years): 10<sup>13</sup>

Kaon intensity Signal efficiency

- Experimental technique
  - "High" momentum K<sup>+</sup> beam

• % level systematics

- Systematics:
  - >10<sup>12</sup> background rejection (i.e. <10% background)</li>
  - <10% precision background measurement


Signal purity & detector redundancy

• Decay in-flight technique



Giuseppe Ruggiero - FPCP 2011-26/05/2011

## The NA62 Experiment for $K \rightarrow \pi \nu \bar{\nu}$ : Overview





# Conclusions

- ★ K decays are a very appealing laboratory to test NP effects
  - **x** Good sensitivity and precise experimental results.
  - **x** Complementarity to B physics in most of the cases.

### **×** $R_K$ measurement:

- ★ The NA62 measurement of  $R_K$  (40% of total data set) allows for a <0.5% relative precision, combined with the other world measurements.
- ★ The SM precision is still 1 order of magnitude better.
- **\*** The complete NA62 data set will allow for a 0.4% precision.
- ★ NA62 phase-II could improve the precision down to 0.2% level.
- ★ Studies of lepton number violation with NA48/2.
  - **\*** Upper limits on BR(K<sup>+</sup> $\rightarrow \pi^{-}\mu^{+}\mu^{+}$ ) improved of a factor 3.
- **\*** BR(K<sup>+</sup> $\rightarrow \pi^+ \nu \bar{\nu}$ ) measurement with NA62.
  - **x** Compelling physics case thanks to the high sensitivity of this decay to NP.
  - ★ 10% precision BR measurement in 2 years of data taking planned.
  - **×** Experiment under construction.

