Run 169226, Event 379791 Time 2010-11-16 02:53:54 CET ATLAS

EXPERIMENT

Measurement of the centrality dependence of the J/ ψ yields and observation of Z production in lead-lead collisions with the ATLAS detector at the LHC

Niels van Eldik

On behalf of the ATLAS collaboration

donderdag 17 februari 2011

Run 169226, Event 379791 Time 2010-11-16 02:53:54 CET

Measurement goals

FIG. 3 (color online). $J/\psi R_{AA}$ versus p_T for several centrality bins in Au + Au collisions. Mid (forward) rapidity data are shown with open (solid) circles. See text for description of the errors and Ref. [21] for data tables.

$R_{AA} = \frac{d^2 N_{J/\psi}^{AA}/dp_T dy}{N_{\text{coll}} d^2 N_{J/\psi}^{pp}/dp_T dy},$

 Colour screening is expected to prevent the formation of quarkonium states in deconfined matter

- J/ψ suppression in HI collisions as a function of centrality already observed in past experiments
 - PHENIX measurement in Au-Au collisions @ $\sqrt{S_{NN}}=200 \text{ GeV}$
 - NA50, √S_{NN}=17.3 GeV
- Measurements at higher energies needed to understand the underlying mechanism
- Z bosons,only accessible at the LHC, are not expected to be affected by the deconfined matter
 - can serve as a reference for the J/ψ analysis

 $_{-}A$

🖄 EXPERIMENT

Measurement of the centrality dependence of J/ψ yields and observation of Z production in lead-lead collisions with the ATLAS detector at the LHC

RIMENT

G. Aad et al. (The ATLAS Collaboration),

Abstract

Using the ATLAS detector, a centrality-dependent suppression has been observed in the yield of J/ψ mesons produced in the collisions of lead ions at the Large Hadron Collider. In a sample of minimum-bias lead-lead collisions at a nucleon-nucleon centre of mass energy $\sqrt{s_{NN}} = 2.76$ TeV, corresponding to an integrated luminosity of about 6.7 μ b⁻¹, J/ψ mesons are reconstructed via their decays to $\mu^+\mu^-$ pairs. The measured J/ψ yield, normalized to the

donderdag 17 februari 2011

Trigger, centrality

• Triggers:

- minimum bias scintillator triggers
- Zero Degree Calorimeters (ZDC)
- Centrality
 - characterised by percentage of total crosssection using the forward calorimeter FCal ΣE_T (3.2 < $|\eta|$ < 4.9)
 - four centrality bins: 0-10%, 10-20%, 20-40%, 40-80%
 - range between 80-100% excluded due to larger systematics in determining R_{coll}

Muon reconstruction in ATLAS - Two independent measurements: Inner detector (ID) Muon system (MS) - Combined using a global refit

Extracting the J/ ψ signal from the data

- Event selection:
 - 2 combined muons with opposite sign
 - p_T > 3 GeV
 - $|\eta| < 2.5$
- \bullet Use sideband subtraction technique to extract the J/ ψ counts
- Mass windows
 - signal [2.95, 3.25] GeV
 - sidebands [2.4, 2.8], [3.4, 3.8] GeV

Determining the J/ ψ reconstruction efficiency as a function of centrality

- J/ ψ reconstruction efficiency as a function of centrality extracted from Monte Carlo
 - no data-driven methods available at low pT
 - centrality dependence parametrized as a function of the total number of hits in the first pixel layer
- Overall reconstruction efficiency was found to drop by 8% for the most central collisions compared to the most peripheral collisions
- Monte Carlo samples:
 - PYTHIA J/ ψ and Z events superimposed onto lead-lead events generated with HIJING
 - HIJING was run with effects of jet quenching disabled
 - elliptic flow imposed subsequent to generation tuned with RHIC data
 - detector response simulated with GEANT4

Systematics

Sources:

- Reconstruction efficiency
- Signal extraction

η

2

Systematics: Monte Carlo driven efficiency determination

- Most of the efficiency dependence from centrality is coming from ID
 - occupancy effects causing good tracks to fail our track selection cuts
- Estimate systematics by comparing differences between data and MC on the selection threshold
- Studied as a function of centrality
 - maximum deviation of 3% found in the most central bins
 - 2 muons \rightarrow 6% maximum total systematics

0

-1

-2

Systematics: Signal extraction

- Cross-check yields using a maximum likelihood fit with the mass resolution left as free parameter
- Two different background models were used: first and second order polynomial
- Maximum deviation of the fitted yield compared to the sideband subtraction method taken as systematic error

The J/ ψ result: Final numbers

Centrality	$N^{\mathrm{meas}}(J/\psi)$	$\epsilon (J/\psi)_c/$	Systematic Uncertainty		
		$\epsilon(J/\psi)_{40-80}$	Reco. eff.	Sig. extr.	Total
0-10%	190 ± 20	0.93 ± 0.01	6.8~%	5.2 %	8.6 %
10-20%	152 ± 16	0.91 ± 0.02	5.3~%	6.5~%	8.4 %
20-40%	180 ± 16	0.97 ± 0.01	3.3~%	6.8~%	7.5 %
40-80%	91 ± 10	1	2.3~%	5.6~%	6.1 %

- Correct for "average" J/ ψ efficiency RATIOs vs centrality from MC
- Relative yield: everything normalised to most peripheral bin

This measurement must be interpreted as a relative yield within experimental acceptance: 2 muons with $p_T > 3$ GeV and $|\eta| > 2.5$

80% of the reconstructed J/ ψ 's have a $p_T > 6.5$ GeV

The J/ψ result: Normalised yields

- Normalising yields:
 - correct for difference in relative cross-section due to differences in bin sizes
- Note: the uncertainties in the 40-80% bin are not propagated into the ratio for the more central bins
- Compare to: mean number of binary collisions calculated using a Glauber Monte Carlo (R_{coll})
 - \bullet uncertainty estimated by varying the input parameters of the Glauber MC by 1 σ
 - impact of trigger bias was estimated to be very small. Accounted by a 2% systematic error.
- The result including statistical and systematical errors

Centrality	R_{coll}	Uncertainty
0-10%	19.5	5.3~%
10 - 20%	11.9	4.7~%
20 - 40%	5.7	3.2~%
40-80%	1.0	

The J/ψ result: Normalised yields (2)

The J/ψ result: ATLAS vs PHENIX

- \bullet PHENIX result: obtained by integrating previously shown result over p_T
- Similar trend observed as in ATLAS data
 - momentum ranges very different

Z production

Run 169045, Event 728772 Time 2010-11-12 01:52:11 CET

> Heavy Ion Collision with $a Z \rightarrow \mu \mu$ Candidate

donderdag 17 februari 2011

Z production in lead-lead collisions: event selection

- Event selection:
 - two combined muon with opposite charge
 - p_T > 20 GeV
 - $|\eta| < 2.5$
 - $|\eta_1 + \eta_2| > 0.01$ (cosmic rejection)
 - mass window [66, 116] GeV
- 38 Z candidates observed
- Relative yield calculation
 - \bullet same method applied as for the J/ ψ
 - \bullet systematics have been assumed to be the same as for the J/ ψ (conservative estimate)

Entries / 4 GeV

Z production in lead-lead collisions: centrality dependence

- Relative Z boson yield found to be compatible with a linear scaling with the number of binary collisions
- Low statistics precludes any definite conclusions

Conclusions

- \bullet First results on the J/ ψ and the Z relative yields in lead-lead collisions obtained with the ATLAS detector
- \bullet We observe a centrality dependent suppression in the normalised J/ ψ yield
- The relative yield of the 38 observed Z candidates as a function of centrality is presented
 - no definite conclusions for the Z bosons can be inferred given the current statistics
 - the distribution is compatible with a flat distribution

