Mini-review of Inclusive B Semileptonic Decays, and $B \rightarrow D(*) \tau \nu$ at BaBar

Concezio Bozzi INFN Sezione di Ferrara

(gratefully acknowledging V. Lüth, P. Gambino, C. Schwanda, R. Kowalewski, G. Ricciardi, M. Franco Sevilla)

The relevance of semileptonic decays

The advantages of B-Factories

- Clean experimental environment: $e^+e^- \rightarrow Y(4S) \rightarrow B\overline{B}$ $\sigma_{Y(4S)} \approx 1.05 nb$ $(\sigma_{Y(4S)} / \sigma_{had} \sim 1/4)$
- Large samples: $L \approx 500 \, fb^{-1}$, $BR(B \rightarrow X \ell \nu) \approx 10\%$
- Reconstruction of s.l. decays:
 - Charged lepton ID: e^{\pm} , μ^{\pm}
 - Hadronic system: $X_c, X_u, D, D^*, \pi, \rho...$
 - v inferred from E_{miss} , p_{miss} :

$$(E_{\text{miss}}, \vec{p}_{\text{miss}}) = (E_{e^+e^-}, \vec{p}_{e^+e^-}) - \left(\sum_i E_i, \sum_i \vec{p}_i\right)$$

Full reconstruction of one B decay, e.g.

 $B^+_{reco} \rightarrow D^- \pi^+ \pi^-, B^-_{SL} \rightarrow X_u^0 l^- v$

- Reduction of combinatorial backgrounds
- improved v reconstruction
- kinematics of hadronic system completely determined
- Low efficiency (0.3-0.6%)

Resulting inclusive samples: $O(100k) B_{SL} \rightarrow X_c l^* v$ $O(1k) B_{SL} \rightarrow X_u l^* v$

June 11, 2012

C. Bozzi - HQL2012 - Prague

3

Inclusive s.l. decays

- OPE factorization of short- and long-distance dynamics
 - Non-perturbative contributions from matrix elements of local operators
 - **Coefficients** of the operators calculated perturbatively
 - double series in powers of α_s and Λ/m_b
- Total decay rate:

$$\Gamma(b \to q \ell \nu) = \frac{G_F^2 m_b^5}{192\pi^3} |V_{qb}|^2 (1 + A_{ew}) A^{pert}(r, \mu) \left[z_0(r) + z_2(r) \left(\frac{\mu_{\pi}^2}{m_b^2}, \frac{\mu_G^2}{m_b^2} \right) + z_3(r) \left(\frac{\rho_D^3}{m_b^3}, \frac{\rho_{LS}^3}{m_b^3} \right) + \dots \right] \quad \left(r = \frac{m_q}{m_b} \right)$$

- Conceptually similar expression for differential rates
- Non-perturbative input appears in experimentally accessible spectral moments

$$\left\langle E_{\ell}^{n}M_{X}^{2m}\right\rangle = \frac{1}{\Gamma_{0}}\int_{E_{0}}^{E_{\max}}dE_{\ell}\int dM_{X}^{2}\frac{d\Gamma\left(\mu_{\pi}^{2},\mu_{G}^{2},\rho_{D}^{3},...\right)}{dE_{\ell}dM_{X}^{2}}E_{\ell}^{n}M_{X}^{2m}$$

• Global fit to moments to determine $|V_{qb}|$ and hadronic parameters $m_b, m_c, \mu^2_{\pi}, \mu^2_G, \rho^3_D, \rho^3_{LS}$

$|V_{cb}|$ from inclusive $B \rightarrow X_c l v$

- Measure spectra of lepton momentum p*_l and hadronic mass m_X or energy E_X in events tagged with a fully reconstructed B
- S/B discrimination: neutrino momentum, missing mass squared
- Calibration and unfolding required for hadronic observables, e.g. m_X
- Measurements from Babar, Belle, CLEO, CDF, DELPHI

Global fit to mass, energy moments

- Extract many moments from a single distribution (high correlations)
- Each point integrates data above E_{min}
- Leading experimental systematics due to detector modeling, B&D decays
- Determine $|V_{cb}|$, m_b , m_c and other hadronic parameters by fitting with theory predictions
- all terms through $O(\alpha_s^2, 1/m_b^3)$ are included
- two renormalization schemes in use
 - *kinetic* (Benson, Bigi, Gambino, Mannel, Uraltsev)
 - **1S** (Bauer, Ligeti, Luke, Manohar, Trott)

Updated HFAG global fit

- Rather than measuring precisely m_b, the fit identifies rather well a strip in the (m_b,m_c) plane
- Precision measurement of m_b important for inclusive $|V_{ub}|$; can be improved by external knowledge of m_c
- In the past, $b \rightarrow s\gamma$ moments were used
- Now, use (conservative) input on *m_c(3GeV)* = 0.998(29) GeV (MS Scheme) *Hoang et al, arXiv:1102.2264*
- Global fit gives

$$|V_{cb}| = (41.88 \pm 0.44_{\text{fit}} \pm 0.59_{\text{theory}}) \ge 10^{-3}$$

 $m_b = 4.560 \pm 0.023 \text{ GeV}$
 $\mu_{\pi}^2 = 0.453 \pm 0.036 \text{ GeV}^2$

• Similar results in 1S scheme

Inclusive charmless s.l. decays

- **Experimentally challenging:** 50x larger $B \rightarrow X_c l^2 v$ background
 - Cut in phase space and measure partial branching fractions
 - Fully reconstruct one B to access m_X , q^2

- Theoretically challenging: in limited phase space
 - OPE breaks down
 - "shape function" is needed to resum non-perturbative physics
 - sensitivity to m_b increases from $\Gamma \sim |V_{ub}|^2 m_b^5$ up to $\Delta \Gamma \sim |V_{ub}|^2 m_b^{10}$

Theoretical calculations predicting ΔΓ OPE-inspired: resummed perturbation theory: BLNP NP B699, 335 (2004) GGOU JHEP 0710, 058 (2007)

- Measure in as many phase space regions as possible
- Be as inclusive as possibly allowed by background knowledge

Best measurements

- Fit the $(M_{\chi}q^2)$ distributions in the region defined by $p^* > 1$ GeV ٠
- Systematic uncertainties dominated by signal modeling
- Total uncertainties on partial branching fractions: 11-12% C. Bozzi - HQL2012 - Prague June 11, 2012

An example of HFAG average

Good consistency

C. Bozzi - HQL2012 - Prague

Tension[™]

Evidence for an excess of $B \rightarrow D^{(*)} \tau^- \overline{v}_{\tau}$ decays

BABAR arXiv:1205.5442 submitted to PRL

Introduction

- W^-/H^- B{ _
- Semileptonic decays with τ lepton in the final ٠ state are **sensitive to charged Higgs**
- ratios R(D) and $R(D^*)$ are both theoretically and experimentally clean $R(D^*) = \frac{Br(\overline{B} \rightarrow D^* \tau v)}{Br(\overline{B} \rightarrow D^* \ell v)}$ The ratios R(D) and $R(D^*)$ are both •
- SM predictions are: ٠

 $R(D) = \frac{Br(B \to D\tau \nu)}{Br(\overline{B} \to D\ell \nu)}$

 $R(D) = 0.297 \pm 0.017, \quad R(D^*) = 0.252 \pm 0.003$

- $B \rightarrow D\tau v$ and $B \rightarrow D^*\tau v$ have been previously established with 3.8 σ and 8.1 σ significances, but sensitivity was not enough to give meaningful constraints on new physics
- This analysis updates the previous Babar measurements by ٠
 - using the **entire dataset** (426 fb⁻¹)
 - improving (x2) the reconstruction of the hadronic B decay
 - extending *e* and μ ID to lower momentum
 - using a multivariate selection (BDT) to reject backgrounds
 - most important variable: E_{extra} (unused energy in calorimeter)

Analysis strategy

- Reconstruct $D^{(*)}$ mesons: 4 (D^0 , D^{*0} , D^+ , D^{*+})lv samples
 - Consider only $\tau \rightarrow lvv$: $D^{(*)}\tau v$ and $D^{(*)}lv$ have same detectable particles in final state
- Remaining D**lv background is poorly known:
 - Select 4 D^(*)π⁰Iv control samples (one for each signal sample)
- 2D ML fit to p_{ℓ}^* and $m_{\text{miss}}^2 = (P_{\text{ee}} - P_{\text{Btag}} - P_{\text{D}(*)} - P_{\ell})^2$
- Fit gives 4 D^(*)τν signal yields, 4 D^(*)Ιν normalization yields, and 4 control channel (D**Iν) yields
- Keep other background yields fixed
 - B^0 - B^+ cross-feed
 - B<u>B</u> combinatorial
 - (q<u>q)</u> continuum
- PDFs taken from MC
- data-driven corrections

C. Bozzi - HQL2012 - Prague

Fit results: $B \rightarrow D^* \tau v$

0

 $N_{\rm sig}$

 $R(D^*)$

80

60 F

40

20

60

40

20

Events/25 MeV

Significance (σ)

Fit results: $B \rightarrow D\tau v$

BABAR, arXiv:1205.5442 submitted to PRL

Statistical errors only

	$D^0 \tau \nu$	$D^+ \tau \nu$	$D\tau\nu$
$N_{ m sig}$	314 ± 60	177 ± 31	489 ± 63
Significance (σ)	5.5	6.1	8.4
R(D)	0.429 ± 0.082	0.469 ± 0.084	0.440 ± 0.058

(isospin constrained)

Systematic Uncertainties

Course	Uncerta		
Source	R(D)	$R(D^*)$	ρ
$D^{**}\ell\nu$ background	5.8	3.7	0.62
MC statistics	5.0	2.5	-0.48
Cont. and $B\overline{B}$ bkg.	4.9	2.7	-0.30
$\varepsilon_{\rm sig}/\varepsilon_{\rm norm}$	2.6	1.6	0.22
Systematic uncertainty	9.5	5.3	0.05
Statistical uncertainty	13.1	7.1	-0.45
Total uncertainty	16.2	9.0	-0.27

BABAR, arXiv:1205.5442 submitted to PRL

ho is the
correlation
between $R(D)$
and $R(D^*)$

Main uncertainties:

Largest errors are Gaussian distributed

- *D**lv*: 15% (conservative)
- No dedicated signal MC sample (impacts PDF parameterization)
- Continuum and BB background: corrections and MC statistics

Summary of $R(D^{(*)})$ Measurements

Comparison to the 2HDM (type II)

- SM matrix element: (L and H: leptonic and hadronic currents)
- H⁺ enters through the zero-helicity current
- Reweight simulation accordingly and repeat fit for several values of $tan\beta/m_H$
- Allowed regions: $\tan\beta/m_{H} = 0.44 \pm 0.02$ for R(D) $\tan\beta/m_{H} = 0.75 \pm 0.04$ for $R(D^{*})$
- Combination of R(D) and R(D*) excludes full parameter space with 99.8% probability (m_H>10GeV)

$$\left. \left(\mathcal{M}_{\lambda_M}^{\lambda_\ell}(q^2, \theta_\ell) \right|_W = \frac{G_F V_{cb}}{\sqrt{2}} \sum_{\lambda_W} L_{\lambda_W}^{\lambda_\ell} H_{\lambda_W}^{\lambda_M} \right)$$

$$H_{t}^{2\text{HDM}} = H_{t}^{\text{SM}} \times \left(1 - \frac{\tan^{2}\beta}{m_{H^{\pm}}^{2}} \frac{q^{2}}{1 \mp m_{c}/m_{b}}\right)$$

Conclusions

- After ten years of efforts, the determination of |V_{cb}|, |V_{ub}| and b quark mass with inclusive decays has improved substantially both from the theoretical and the experimental point of view
- Accuracies are at the (few) *percent level*
- Long-standing 2-3σ "tensions" between inclusive and exclusive determinations/CKM fits are still with us
 - Do we understand QCD at the percent level?
 - Is there any new physics in $b \rightarrow u$ transitions?
- Significant excess of events in B→ Dτν and B→ D*τν, marginally compatible with the SM and clearly disfavoring a 2-Higgs Doublet Model of type II
- *Final measurements from the B-Factories*: further progress will come from current experiments (LHCb) and future B-Factories

Backup

"Classic" endpoint analyses

- Typical requirements: missing momentum, event shape
- S/B ~ 1/10, ε<~40%, measurements limited by background knowledge

"improved" endpoint analysis

• Separate $b \rightarrow clv$ background by using

$$s_{h}^{\max} = m_{B}^{2} + q^{2} - 2m_{B}\left(E_{e} + \frac{q^{2}}{4E_{e}}\right)$$

• S/B~1/2, ε~25%

BaBar (PRL 95, 111801, 2005 PRL 97, 019903 (2006) Err.)

 $\Delta \mathcal{B}(2.0, 3.5) = (4.41 \pm 0.42 \pm 0.42) \times 10^{-4}$

Systematics dominated by K_L and neutral particle ID, charm SL decays

Systematic uncertainties

Source	$M_X < 1.55$	$M_X < 1.70$	$P_{+} < 0.66$	$M_X < 1.70 \mathrm{GeV}/c,$	(M_X, q^2)	$p_{\ell}^{*} > 1.0$	$p_{\ell}^{*} > 1.3$
$\sigma(\Delta \mathcal{B}(B \to X_u \ell \nu))$	GeV/c^2	GeV/c^2	GeV	$q^2 > 8 \mathrm{GeV}^2/\mathrm{c}^4$	$p_\ell^* > 1.0 \text{GeV}/c$	GeV/c	GeV/c
Statistical error	7.1	8.9	8.9	8.0	7.1	9.4	8.9
MC statistics	1.3	1.3	1.3	1.6	1.1	1.1	1.2
Detector-related:							
Tracking efficiency	0.4	1.0	1.1	1.7	0.7	1.2	0.1
Neutral efficiency	1.3	2.1	4.0	0.7	1.0	0.9	0.9
π^0 efficiency	1.2	0.9	1.1	0.9	0.9	2.9	1.1
PID eff. & misID	1.9	2.4	3.3	2.9	2.3	2.9	2.2
K_L	0.9	1.3	1.1	2.1	1.6	1.3	0.6
Fit related: (tbu)							
m_{ES} fit parameters	2.0	2.7	1.9	2.6	1.9	2.0	2.5
combinatorial backg.	1.8	1.8	2.6	1.8	1.0	2.1	0.5
Sig	nal knowledg	ge:					
SF parameters	$^{2.4}_{-1.6}$	$\frac{1.8}{-0.9}$	0.6 - 1.8	$0.6 \\ -0.9$	6.0 - 4.9	5.8 - 7.1	7.1 - 6.1
SF form	1.2	1.6	2.6	1.2	1.5	1.1	1.1
Exclusive $B \to X_u \ell \nu$	0.6	1.3	1.6	0.7	1.9	5.3	3.4
Gluon splitting	1.2	1.6	1.1	1.0	2.7	3.1	2.4
Background knowledge:							
K_S veto	0.8	1.4	1.7	2.1	1.2	1.3	0.3
B SL branching ratio	0.9	1.4	1.5	1.4	1.0	0.8	0.7
D decays	1.1	0.6	1.1	0.6	1.1	1.6	1.5
$B \to D\ell\nu$ form factor	0.5	0.5	1.3	0.4	0.4	0.1	0.2
$B \to D^* \ell \nu$ form factor	0.7	0.7	0.9	0.7	0.7	0.7	0.7
$B \to D^{**} \ell \nu$ form factor	0.8	0.9	1.3	0.4	0.9	1.0	0.3
$B \to D^{**}$ reweight	0.4	1.0	1.1	0.7	1.6	0.1	1.2
Total systematics:	$5.3 \\ -5.0$	6.4 - 6.2	-8.0	6.2 - 6.2	8.5 - 7.7	10.5 - 11.2	$9.4 \\ -8.7$
Total error:	$9.0 \\ -8.8$	$11.0 \\ -10.9$	12.0 - 12.1	10.2 - 10.3	11.1 - 10.5	$^{14.1}_{-14.6}$	$\frac{12.9}{-12.4}$

Correlation matrix for Babar analysis

TABLE V: Matrix of statistical correlations between different analyses. The $p_{\ell}^* > 1 \text{ GeV}/c$ requirement is implicitly assumed in the definitions of phase space regions, unless otherwise noted. The entries above the main diagonal refer to correlations between measurements of partial branching fractions; the entries below the main diagonal (in boldface) refer to correlations on $|V_{ub}|$ measurements. In the latter case, theoretical correlations have been included, as described in the text.

Analysis	$M_X < 1.55$	$M_X < 1.70$	$P_{+} < 0.66$	$M_X < 1.70 \mathrm{GeV}/c^2,$	(M_X, q^2)	$p_{\ell}^* > 1.3$
	GeV/c^2	GeV/c^2	GeV	$q^2 > 8 { m GeV}^2/{ m c}^4$	$p_\ell^* > 1.0\text{GeV}/c$	${ m GeV}/c$
$M_X < 1.55 \mathrm{GeV}/c^2$	1	0.77	0.74	0.50	0.72	0.57
$M_X < 1.70 \mathrm{GeV}/c^2$	0.81	1	0.86	0.55	0.94	0.73
$P_+ < 0.66 \mathrm{GeV}$	0.69	0.81	1	0.46	0.78	0.61
$M_X < 1.70 \mathrm{GeV}/c^2, q^2 > 8 \mathrm{GeV}^2/\mathrm{c}^4$	0.40	0.46	0.38	1	0.52	0.46
$(M_X, q^2), \ p_{\ell}^* > 1 \text{GeV}/c$	0.58	0.88	0.67	0.34	1	0.74
$p_\ell^* > 1.3 \mathrm{GeV}/c$	0.53	0.72	0.58	0.40	0.72	1

Divertissement

Buras, Gemmler, Isidori 1007.1993

- LR models can explain a difference between inclusive and exclusive V_{ub} determinations [Chen,Nam]
- Also in MSSM [Crivellin]
- BUT the RH currents affect predominantly the exclusive V_{ub} , making the conflict between V_{ub} and sin2 β (J/ ψ K_S) stronger...

(stolen from P. Gambino)