
MEASUREMENT OF ISOLATED DIRECT PHOTONS IN LEAD-LEAD COLLISIONS AT 2.76 TEV WITH THE ATLAS DETECTOR

Iwona Grabowska-Bold (AGH UST, Kraków) On behalf of the ATLAS Collaboration Quark Matter 2012 August 13-18th, 2012

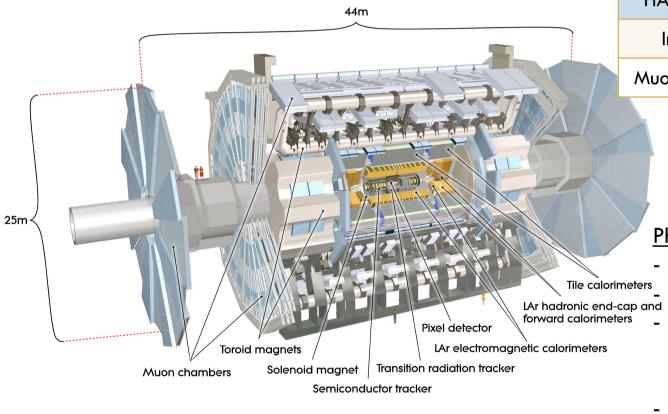
Introduction

One of the main topics of heavy-ion physics is to study QGP

Properties of QGP

[®] Quark Gluon Plasma (QGP)

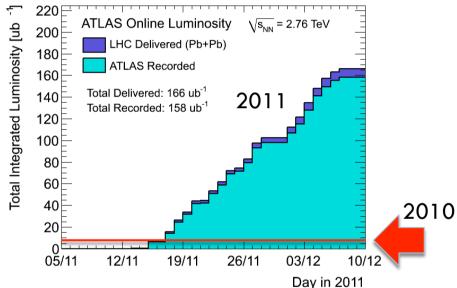
- Opaque to colored partons
 - Jet quenching, changed particles and quarkonia suppression
- Transparent to EM and weekly interacting particles
 - Electro-weak bosons (γ,Z⁰,W[±]) are supposed not to be affected by the medium
 - They turn out to be a perfect probe for understanding of the suppression mechanism
 - In this talk the latest results from ATLAS on isolated direct photon production will be discussed (ATLAS-CONF-2012-051)



ATLAS Detector

Three main components: Inner tracker, electromagnetic (EM) and hadronic (HAD) calorimeters, and muon system

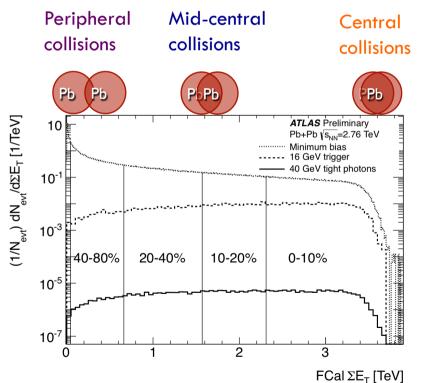
Measurements	η coverage
EM Calorimeter	(-3.2, 3.2)
HAD Calorimeter	(-4.9, 4.9)
Inner Tracker	(-2.5, 2.5)
Muon Spectrometer	(-2.7, 2.7)

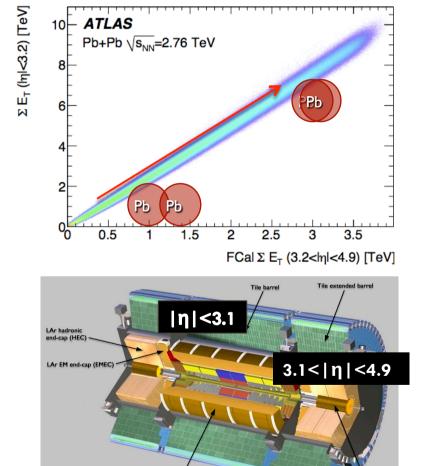

Photons measured in EM Calo:

- Lead-LAr samplings
 - Three longitudinal sections
- First fine segmented layer discriminates photons from π^0 and η mesons
- 10-17%/√E[GeV]

Full azimuthal acceptance Isolated Direct Photons in ATLAS, Aug 13-18th, 2012

Inner Tracking Detectors			Calorimeters			Muon Detectors				
Pixel	SCT	TRT	LAr EM	LAr HAD	LAr FWD	Tile	MDT	RPC	csc	TGC
99.7	100	100	99.2	100	100	100	100	99.6	100	100
Luminosity weighted relative detector uptime and good quality data delivery during 2010 stable beams in PbPb collisions at $vs_{\rm NN}$ =2.76 TeV between November 8th and 17 th (in %).										


Heavy-ion run at $\sqrt{s_{NN}} = 2.76 TeV$

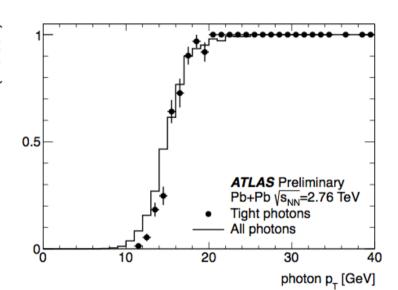

- In 2011 ATLAS recorded 0.16 nb⁻¹ of Pb+Pb data (c.f. 0.009 nb⁻¹ in 2010)
 - Various High Level Triggers used
 - Photon measurement: L_{int}=0.13 nb⁻¹ which is equivalent to N_{evt}=755M minimum bias events in 0-80% centralities
- Data recording efficiency > 95%
- Fraction of data passing dataquality criteria > 99%

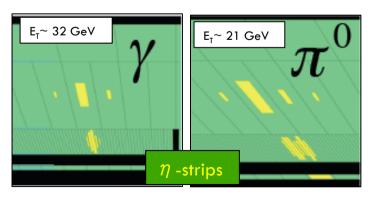
Characterize centrality by percentiles of the total cross-section using forward calorimeter (FCal) ΣE_T (3.1< $|\eta|$ <4.9)

LAr EM

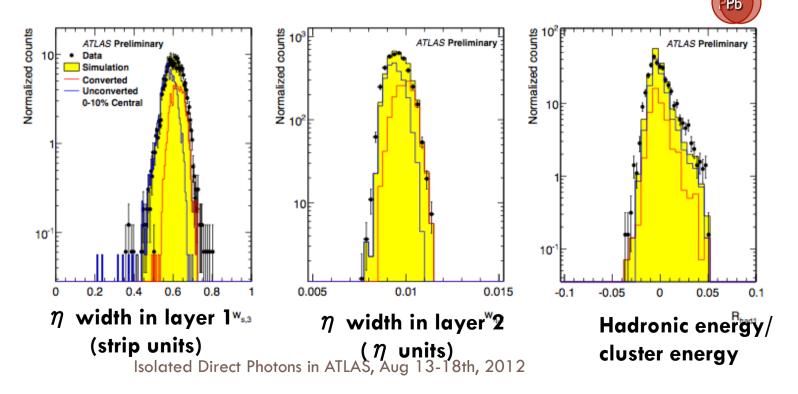
Ar forward calor

FCal SE_T [TeV] Isolated Direct Photons in ATLAS, Aug 13-18th, 2012




Analysis selection

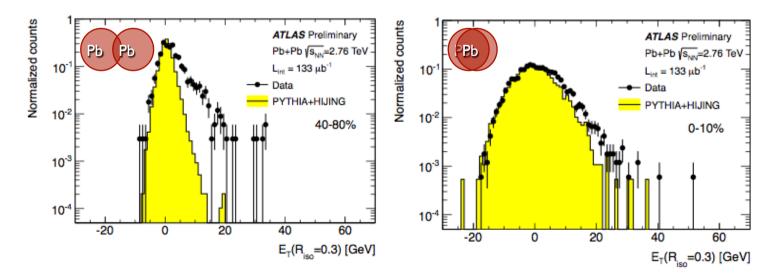
- Trigger: EM cluster with $E_T > 16$ GeV at L1
- 100% efficient for photons with E_T>20 GeV
 Underlying-event background (UE) is Underlying-event background (UE) is subtracted event-by-event
 - Corrections of O(1 GeV) even in central events
- Photon reconstruction with a sliding window algorithm seeded by clusters of at least 2.5 GeV in the second sampling layer
 - Photon energy using all three layers and the presampler
 - Photon conversions are not reconstructed in the HI environment
 - Nine shower-shape variables used to choose high-quality photons (=tight photons)

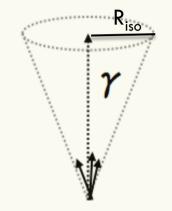


Shower shapes

Signal is modeled with 450k photon+jet events using PYTHIA
 6.4 with minimum bias events from HIJING

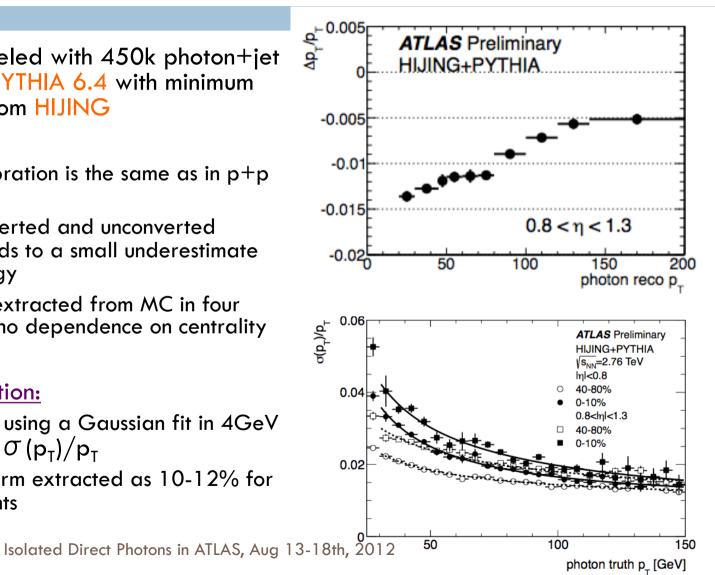
- Total MC (yellow), unconverted (blue) and converted (red) photons
- Distributions agree well between data and simulation





Photon isolation

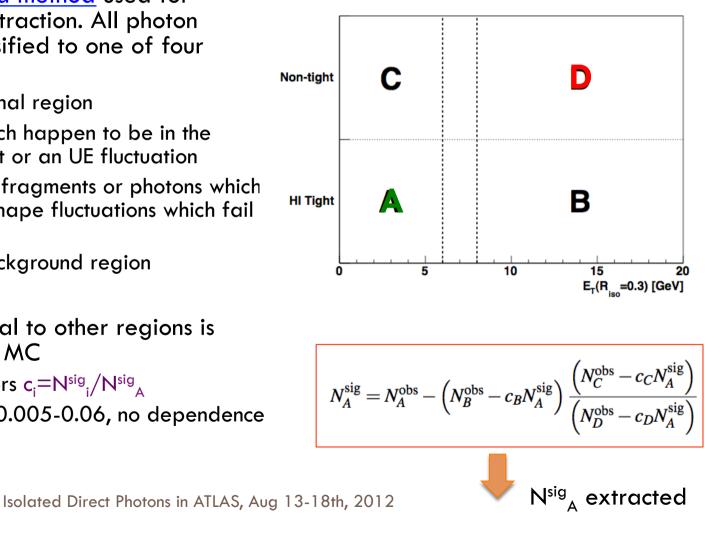
- □ 6435 tight photon candidates with p_T >45 GeV and $|\eta|$ <1.3 before applying the isolation requirement
- □ Isolation criterion optimized for HI photons: $E_T(R_{iso}=0.3)$ transverse energy in a cone of R_{iso} around the photon axis
 - Enhancement of data for E_T(R_{iso}=0.3)>0 due to two components: UE energy fluctuations and di-jet background
 - Width of $E_T(R_{iso}=0.3)$ in 0-10% photon+jet events is 6 GeV
 - Isolation requirement: E_T(R_{iso}=0.3) < 6 GeV</p>


Photon performance

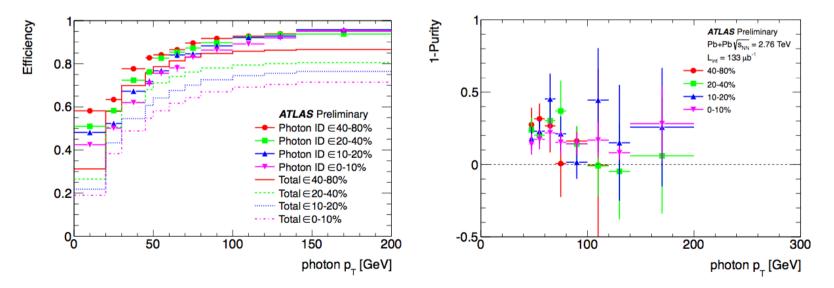
- Signal is modeled with 450k photon+jet events using PYTHIA 6.4 with minimum bias events from HUING
- Energy scale:
 - Photon calibration is the same as in p+p collisions
 - Mix of converted and unconverted Π. photons leads to a small underestimate of the energy
 - Correction extracted from MC in four bins in η , no dependence on centrality

Energy resolution:

- Determined using a Gaussian fit in 4GeV intervals to $\sigma(p_T)/p_T$
- Sampling term extracted as 10-12% for central events

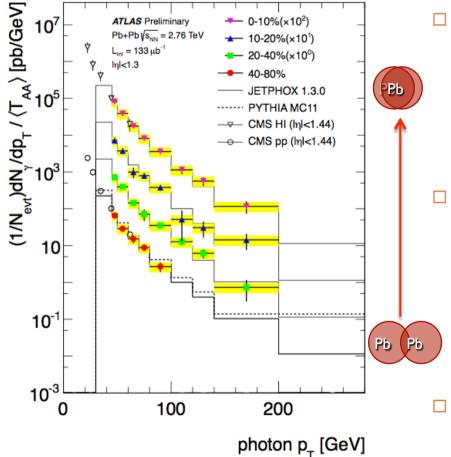


Background Extraction

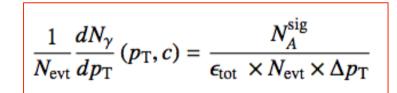

- Double sideband method used for background subtraction. All photon candidates classified to one of four regions
 - A: Primary signal region
 - B: Photons which happen to be in the vicinity of a jet or an UE fluctuation
 - C: Isolated jet fragments or photons which have shower shape fluctuations which fail the cuts
 - D: Primary background region
- Leak of the signal to other regions is evaluated using MC
 - Leakage factors c_i=N^{sig}_i/N^{sig}_A
 - **c**_i range from 0.005-0.06, no dependence on centrality

- Efficiencies extracted from MC and normalized to all PYTHIA isolated photons with E_T(R_{iso}=0.3)<6GeV (the isolation removes 1.5% photons)
 - Three components of the total efficiency:
 - Reconstruction (95% constant with p_T), identification and isolation
- \Box Purity derived from data and defined as N^{sig}_{A}/N^{obs}_{A}

Source	Effect on yield
Tight cut definition	20%
Non-tight cut definition	3%
Isolation criterion	20%
Energy scale	12%
Unfolding	3%
Event counting	1%
Total	31%

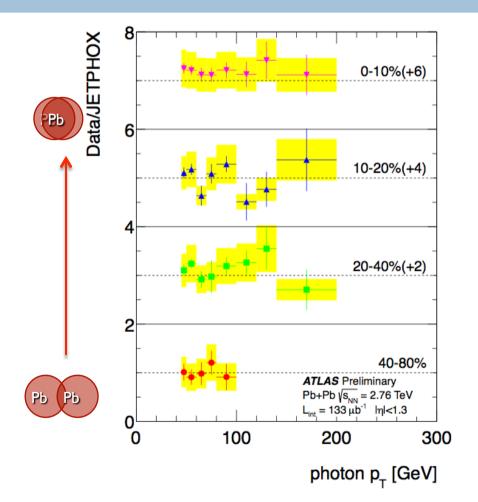

Systematic uncertainties dominated by the choice of tight photon identification cuts and isolation cone properties.

Total systematic uncertainty of 31% independent of p_T and centrality is assigned.

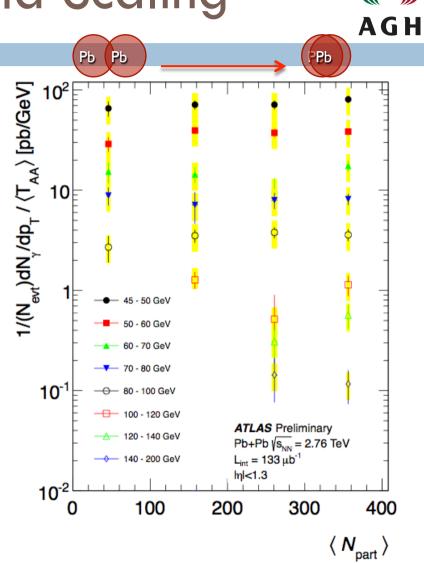


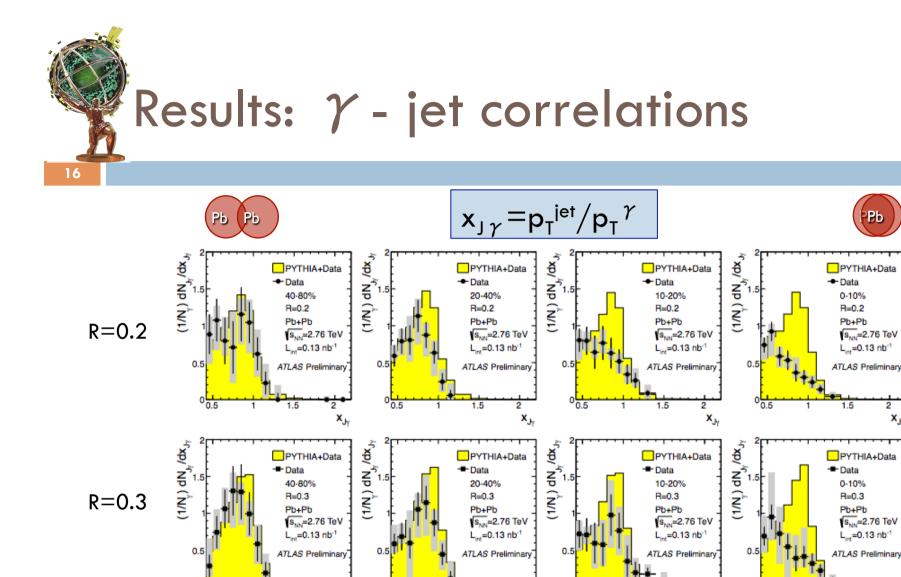
Results: Photon Yields

□ Photons with $45 < p_T < 200 \text{ GeV}$ and $|\eta| < 1.3$ in ATLAS


- CMS p+p and Pb+Pb at 2.76
 TeV: Phys. Lett. B 710, 256 (2012)
 - 10% larger interval in η
 - Isolation condition: E_T(R_{iso}=0.4) <5GeV</p>
 - Good agreement with the ATLAS measurement
 - PYTHIA and JETPHOX shown for comparisons

Results: Data vs. Theory


- Comparisons of Pb+Pb data with p+p cross sections from JETPHOX 1.3.0
 - PDFs: CTEQ 6.6
 - BFG fragmentation functions
 - No isospin or nPDFs included
 - Scale uncertainties: ±13%
 - PDF uncertainties at 7 TeV: $\pm 5\%$
- Equivalent to R_{AA} but with MC reference
- Good agreement of data and JETPHOX



- Photon yields as a function of centrality in bins of p_T
 - No centrality dependence in any of the measured p_T intervals
 - Photon yields in HI collisions scale linearly with <T_{AA}> or equivalently with <N_{coll}>
- Photon production rates are not affected by QGP
 - Isolated direct photons seem to be a perfect probe to help in understanding of the jet quenching phenomenon

2 2-1 ATLAS-CONF-201

 \mathbf{x}_{s}

X_b

X

Centrality-dependent shift in $x_{\perp \gamma}$

P.Steinberg IVA Thu

More details: Z.Citron 1B Tue

AGH

Isolated Direct Photons in ATLAS, Aug 13-18th, 2012

X

1.5

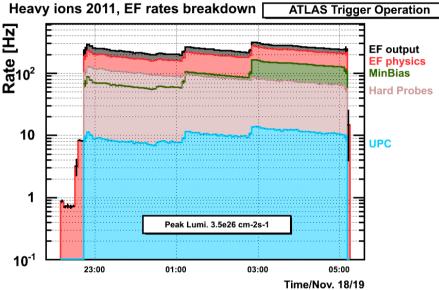
Jets: $p_T > 25$ GeV and $|\eta| < 2.1$

 $|\Delta \phi| > 7\pi/8$

XJv

Photons: $60 < p_T < 90$ GeV and $|\eta| < 1.3$

- Isolated direct photons have been measured in ATLAS
 - **\square** Eight bins of p_T from 45-200 GeV and integrated over $\mid \eta \mid < 1.3$
- Photon yields have been extracted as a function of p_T and centrality
 - After scaling the yields by the mean nuclear thickness <T_{AA}>, they are observed to be constant as a function of centrality implying a linear scaling with the number of binary collisions
 - This result establishes the basis for measurements which use photons as unmodified hard probes
 - Scaled yields, as a function of p_T, are found to be in good agreement with NLO pQCD calculations as implemented in JETPHOX 1.3.0.


Back-up slides

19

- In 2010: Peak luminosity 3x10²⁵cm⁻²s⁻¹ which gives 350 Hz of min bias rate at L1
 - Record all min bias events to tape,
- $\frac{\ln 2011}{6 \text{ kHz of min bias rate at L1,}}$
 - High Level Trigger (HLT) essential to bring an output rate down to 200 Hz,
 - Two approaches used:
 - Full scan reconstruction at HLT on all minimum bias events triggered by L1 (jets, muons),
 - Region-Of-Interest (Rol)-based reconstruction seeded of the lowest-p_T threshold at L1 (muons, photons, electrons),
 - In addition to min bias data high-p_T jets, muons, electrons, photons and UPC were enhanced

Signature	Trigger		Stream	Events Taken	Reco CPU/evt
Jets	single jet p _T > 20 GeV	R			[s]
Muons	single muon p _T >4 GeV di-muon p _T >2 GeV	R	Min Bias	60M	70
Egamma	single egamma p _T >14 GeV di-egamma p _T >5 GeV		Hard Probes	54M	140
UPC	Isolated Direct Photons in ATLAS, low track multiplicity cut	Aug 13-	18/10/2012	6.6M	30

- R_{η}-ratio of energies deposited in a 3x7 ($\eta x \varphi$) window to that deposited in a 7x7 window, in units of the second layer cell size
- $\Box = \omega_{n,2}$ -RMS width of the energy distribution of the cluster in the second layer in the η direction
- \square R_{ϕ}-ratio of energies deposited in a 3x3 window in the second layer to that deposited in a 3x7 window, in units of the second layer cell size
- \square R_{had}-ratio of E_T measured in the hadronic layer to E_T of the photon cluster
- \square R_{had1}-ratio of E_T measured in the first sampling layer of the hadronic calo to E_T of the photon cluster
- \Box $\omega_{s,tot}$ -total RMS of the E_T distribution in the η direction in the first sampling "strip" layer
- $\hfill \omega_{s,3}$ -RMS width of the three "core" strips including and surrounding the cluster maximum in the strip layer
- \Box F_{side}-fraction of E_T in seven first-layer strips surrounding the cluster maximum, not contained in the three core strips
- E_{ratio}-asymmetry between the transverse energies in the first and second maxima in the strip layer
- \Box Δ E-difference between E_T of the first maximum, and the minimum cell E_T between the first two maxima

Glauber fits for ATLAS

- We are using FCal energy sum, as before
- Use standard Glauber MC (<u>http://arXiv.org/abs/arXiv:0805.4411</u>)
 - R=6.62 fm, a=0.546 fm (skin depth)
- Assume both participants and collisions contribute
 - "Two component model", controlled by parameter "x"

$$\Sigma E_{T,FCal} = E_{T,pp} \left((1-x) \frac{N_{part}}{2} + x N_{coll} \right)$$

- x=0.13±0.01(stat)±0.05(syst) found to describe RHIC data
- Incorporate FCal energy resolution and noise
 - Let detector noise be a free parameter (sum of cells)
 - Resolution assumed to be 100%/√(E(GeV))
- Input data distribution is FCal Et from mbSpTrk selection
 - Cuts requiring good vertex (>1 track), MBTS (DeltaT<3ns), ZDC (AND)