CMS Software Performance
Strategies

Peter Elmer — Princeton University
Giulio Eulisse, Lassi Tuura — Northeastern University

Vincenzo Innocente - CERN
(and many people developing software in CMS)

CHEP 09, Prague
23 Mar, 2009

Introduction

The advantages of improvements to the performance and efficiency
of our software are clear. For a fixed set of available resources,
such improvements 1imply we can:

4 yse fewer resources for task X (use the rest for additional tasks Y, Z, ...)

4 use the same resources, but get the task done more quickly

The fewer computing resources a given task needs, the less likely
1t 1s to get entangled in computing “workflow” problems:

4 orid infrastructure failures, queue time limits, memory limits, storage

system I/O limits and failures, etc.

Alternatively, the entire cost of the project can be reduced. I

P. Elmer CHEP 09 Collaboration Meeting 23 Mar, 2009 2

% What do we mean by performance?

There are many things one can label as ““software performance”:

s CPU time per processed event

Memory footprint of application

CPU/wall clock time ratios
/O rates and patterns

Event data sizes, transaction rates on databases, application
startup time, software compilation times, and many other

things, etc. etc.

There are also many use cases from bulk production to analysis.
To keep things simple, I'll focus in this presentation on the first two.

P. Elmer CHEP 09 Collaboration Meeting 23 Mar, 2009 R

Overview

In pursuit of improved software performance CMS has transitioned
from a dedicated “Performance Task Force” to a regime 1in which
such work happens more routinely and systematically as part of
the release planning, integration and validation.

In this talk I will describe the various strategies and tools we have
been developing and using to pursue improved software
performance and give some specific examples and benchmarks

to give an 1dea of the gains achieved!

P. Elmer CHEP 09 Collaboration Meeting 23 Mar, 2009 4

CPU utilization

Three broad classes of changes which affect the CPU performance:

1 Physics algorithmic — the program output changes

* Extra cuts, simulating extra or more detailed effects, “Do we run the extra
trackfinder?”

2 Algorithmic, but technical — the program output does not change

* Caching, lazy evaluation, removal of redundant calculations, data structures, etc.

3 Purely technical — the program output does not change

* Changes related to specific issues in C++, the memory management, the
operating system, the compilers and the hardware where are applications run

By far the largest gains/losses come from #1, of course. Improvements from
#2 and #3 are “free beer” 1n that there are no trade-offs with physics (though
there may be trade-offs between CPU use and memory, etc.)

P. Elmer CHEP 09 Collaboration Meeting 23 Mar, 2009

Strategy 1: As a consequence of our Performance Task Force, several
groups now routinely include work on improving performance into their
development plans in addition to “new feature” development/changes
(some of which increase the CPU requirements)

See for example the talk on CMS simulation tuning by F. Cossutti

Strategy 2: Monitor in detail the performance over time, watching
for increases and also looking for new possibilities for code

performance improvements, improving things continuously.

No ‘“crisis, boom and bust” cycle for performance!

I don't have time 1n this presentation to cover all of the specific
things we've looked at, but there 1s one very pervasive one in the

which I will discuss: the (ab)use of dynamic memory.
(In the free beer category!)

P. Elmer CHEP 09 Collaboration Meeting

From 1gprof (sampling) performance measurements, we have seen in the past

that our applications take 20% or more of the time explicitly in memory
related operations (malloc/free/new/delete).

In addition these memory operations are often associated with other activity
such as temporaries, copy ctors, dtors and (potentially) indirect performance

loss from stalls.

Observation: memory operations are often accidental, unnecessary, can be

reduced in number or eliminated altogether. The way they originate often
results in CPU time and/or instructions spread across multiple functions.
Strategy: use the number of memory allocations itself as a first-level
benchmark for optimization (smaller 1s better), in addition to optimizing
using CPU time and/or instructions as a benchmark.

P. Elmer CHEP 09 Collaboration Meeting 23 Mar, 2009 7

Bytes

% total Total Calls Punction
100.0 322'562'440'593 2'2810'467'624 <spontanecus> [1]
100. 0 322'563'440'HF9B 2'810"467'684 _ libe_start

Sz D Number of Allocations
{:!.:i;.__prnfila (gelf == 0.01%
% total Eelf

o
16 .43 53'001'649'47 WavigationHistory: (GdNavigationHistory (Gd¥avigationHistory conste)] [40]

15.37 49'591'209'"'600 427'515'600 GAdTransportation::PostStepDolti (G4Track consts, &dS5tep consts) [29]
B. 92 23'757'984'245 2'1B7'563 TBasket::BeadBasketBuffers(long long, int, TFile#) [38]
.48 20'901'969'200 2'195'585 inflateInit2 [4E]
6.23 20'099'701'776 1737461 '623 Trackinghction::PrelUserTrackinghction(GdTrack const*) [49]
4. .93 15'391"'135"'434 2'192'5339 TBuffer: TBuffer (TBuffer:: :EMode, int) [53]
2.5
0.41 1'320'651"'768 22'2532'517 std::vector<CLHEP: :HepSVector, std::allocator<CLHEP::Hep3Vectors =:: M insert aux(gno ecast:: |
LS
0.30 969'483 "'000 15'910'239 std::vector<EdCascadParticle, std::allocatocr<GdCascadParticle> »: operator=(std: :vector<Gd4Ca
<., >
.5‘-'_--—_ i
Call tree ile (cumnlative
Sl e et o] S
B
95.80.00000. 308'122'379'267 f 209'122'379'2567 2'711'9949'373 / 2'711'999'373 adm - WorkerT<edm: : EDProducar:>: : imf
[18] 95.8 309'122'379'267 Q0 / 309'122'379'267 2'711'999'373 edm: : EDProducer: :doEvent (edm: :Event]
BIEES 260'281'E63'356 / 260'281'563'356 2'366'681'410 / 2'366'681'410 OscarProducer : : prodoce {edm: -Event]
Bl s 20'048'772'685 / 20'048°772'685 45'669'316 / 43'669'Z16 EiftripDigitizer: : produce (edm: : EV
< .-
Rank % total Belf g=1f / Children Calls / Total Function
BT 260'281'563'356 / 309'122'379'267 2'8566'681'410 / 2'711'9939'373 edm: EDProducer : ; doEvent (edm: :Evel
[21] 20.7 2560'281'E63'3266 27'600 / 260'281'535'756 2'366'681'410 OscarProducer : : produdte (edm: (Events,
e e 260'004'420'536 / 260'004'420'536 2'366'670'088 / 2'366'ET0'0EE RunManager: : preduce (edm: : Eventé,
[e e e e 174'215'776 / 174'215'776 400 / 400 CalofD: :fillHits(std: :vector<pCal
<.,.>»

An example (and abbreviated) igprof memory allocation report. It contains two flat
profiles (allocations within a function and its callees, allocations within a function)
and also a call graph.

P. Elmer CHEP 09 Collaboration Meeting - Prague 23 Mar, 2009 8

Counter: HEM TOTAL

1 - large number of allocs, copy ctor!

Flat profile (cumulative >= 1%) 2 - CMS code (recently removed)
% total Total Calls Punction - i d

100.0 322'562'440'598 2'310'467'694 <=spontanecus> [1] 3 VECtor capaCIty rESIZlng

100.0 322'553'440'E9E 2'810"467'684 _ libe_start_main [2] -

<. > (M_insert_aux)
Flat profile (self >= 0.013) 4 - more copying (assignment)

k! Sill e WM T I H T)
16 43 53'001'649'472 427'576' 864 Gﬂlavigatianl-‘ltnt.urg Gdllmigatimﬁistary(muavtgatiunﬁiztnry conste] [40] 1
15 .27 49'591"'E00'"'600 427"'51E5'600 I T ItI[G-ITrnnk consts, Gd5tep consts) [29]
- o Z 18 7F 0 B = LE ' f ="1 [28]

6.48 20'901'969"'200 2'195'585 inﬂata.l:niti [45]

6 .23 20'099'701 776 179'd61'623 Trackin Mttmn Praummac’l:in Aotion (GdTrack const*) [49] 2

q4.93 15'891'135"'45354 27192'0349 .

i

0.41 1'320'651"'768 3 22"232'517 std::vector<CLHEP: :HepSWVector, std::allocator<CLHEP:: SVector= =:: M insert aux

L S

0.30 969'483'000 4 157910'239 std::vector<GdCascadParticle, std::allocatcr<GdCascadParticle> >: ! ator=(std: ! vector<G4dCa

g >

Call tree profile (commlative)

o
95.8 3097'122'379'267 / 309'122'379'267 2°711'999'373 /4 2'711'999'373 adm: WorkerT<edm: : EDProducaer:-: : imf
[1&] 95.8 309 122’3?9 257 d / 309'122'379'267 2'711'989'373 edmn: : EDFroducer: :doEvent (edm: :Event]
BINIEE 260'281'563'356 / 260'281'563'355 2'366'681'410 / 2'366'6E1'410 OscarProducer : : prodoce (edm: :Event)
e R R 20'048°'772'685 / 20'048° 772’685 43'6649'316 / 43'669°516 EiftripDigitizer: :produce (edm: : EV
<L
Rank % total Salf g=1f / Children Calls / Total Function
L e e 260'281'563'556 / 309'122'379'267 2'566'681'410 / 2'711'999'373 edn: EDProducer : ;doEvent (edm: :Evel
[21] 20.7 260'281'BE63'366 27'600 / 260'281'535'7E6 2'366'681'410 OscarProducer: : produte (edm: :Bvants,
0 R e e e 260'004'420'536 / 260'004'420'535 2'366'670'088 / 2'366'6T0'0EE RunManager: : produce (edm: : Events,
i B S S 174'215'776 J/ 174'215'776 400 / 400 CalofSh: :fillHits (std: :vector<PCal
LT

Many opportunities for performance improvements become clear when looking at
an application with the "dynamic memory allocations" view, ranging from the use
of dynamic memory within tight loops (1,2) to the usual C++ craziness (3,4)

P. Elmer CHEP 09 Collaboration Meeting - Prague 23 Mar, 2009 0

CPU time/event by release

Our reconstruction, heavily RECO

dominated by CMS COdea Release Time/event | Perfticks | Alloc Rate | Alloc Rate
1s an important application CMSSW 1 8 4|17.0s 18.92% |1.17 MHz |99.4 MB/s
to optimize. Here we have CMSSW 2 1 7|55s 12.63% |786kHz |88.3 MB/s
made significant progress, CMSSW 3 0 X|5.0s 12.33% |775kHz |81.0 MB/s
a factor of ~3 over the past CMSSW_3_1_X|6.0s 11.80% |762kHz |82.8 MB/s

year (see table). Pythia TTbar events

The changes made spanned all three of the categories mentioned earlier, and
also cover an additional year's worth of reco development, of course.

The figure-of-merit numbers do not correlate strictly with the total time as there were many other things

going on here, but smaller is better and reduce the total time even if something else is pushing it up!

P. Elmer CHEP 09 Collaboration Meeting - Prague 23 Mar, 2009 10

The other application we

often use for benchmarks is
GEN-SIM-L1-DIGI-HLT

GEN-SIM-L1-DIGI-HLT

Release Time/event | Perfticks | Alloc Rate | Alloc Rate
CMSSW_1_8 4|99.0s 9.54 % 356 kHz 54.4 MB/s
CMSSW_2 1 7(132.0s 7.98% 401 kHz 28.7 MB/s
CMSSW_3 0 X([(1274s 8.38% 426 kHz 29.5 MB/s
CMSSW_3 1 _X|[1126s 5.64 % 250 kHz 27.3 MB/s

Pythia TTbar events

The initial increase 1s due to changes made as part of the (physics) tuning

of the simulation, see talk by F. Cossutti. Subsequent improvements come

primarily from our performance work. Here we are dominated by Geant4,

but we have made improvements both to our own code and to Geant4.

GEN-SIM-L1-DIGI-HLT = an application which runs the event generation, simulation,

digitization simulation, L1 trigger emulation and High Level Trigger (HLT) code

P. Elmer

CHEP 09 Collaboration Meeting - Prague

23 Mar, 2009

11

CMS officially asks our computing centers to provide 1GB/job-slot in order to
run our applications. Keeping our applications within a 1GB memory
footprint has been an ongoing battle.

The Apollo Guidance Computer
had 4kB RAM, 32kB ROM and

they went to the Moon.
We have 1GB and usually have no

clue how we've filled it up.

Strategy: understand precisely how we use the memory and justify it all
systematically: heap, code, BSS and how it all fits together

A tall order: we are somewhat tools-limited, and definitely “understanding”
limited, so we've focused on developing these things.

P. Elmer CHEP 09 Collaboration Meeting 23 Mar, 2009 |

From valgrind 3.3.0 the massit heap profiler has improved significantly and

1s much more useful for large applications such as ours.

Snapshot 62

n time (i) total(B) useful-heap(B) extra-heap(B) stacks(B)
G2 8,1921,920,724 35,320,408 26,487, 090 8,833,318 a

74,99 (26,457,090B) (heap allocation functions) malloc/new/new[], --alloc-fns, etc.

Search (regexp): | | [clear]

bytes function library

s=-) 9,993,231 std::string::_Rep::_5_create{unsigned, unsigned, std::allocator=char= const&] new_allocator. h: 81

char* std::string::_5_construct=char const*={char const*, char const*, std::allocator=char= constE,
std:: forward_iterator_tag)

9,848, 256 25. 62%

basic_string.tcc:150

11 9,048, 204|25. 62% I std: :string::stringichar const*, std::allocator<char= const&) basic_string.h:1386
| || -=i(-1|6,726,161 19, 4% Reflex: :TypeName: : TypeName{char const®, Reflex::TypeBase*, std::type_info const*) LibReflex. so
| 1] -={+)|1,630,868 04.62% Reflex: :MemberBase: :MemberBase(char const*, Reflex::Type const&, Reflex::TYPE, unsigned) libReflex.so
|11 -3':+]| 396.632|BEI.S?1= |RefLex::Sc0peName: :ScopeNamei{char const*, Reflex::ScopeBaset) lLibReflex.sao
111 .3|:+:|| 386.329| a0, 37% |Ref1.ex: :PluginFactoryMap: :FillMap(std: :string const&) libReflex.so
11 -=i-) 78,164 00.22% below ms_print’s threshold in 1985 places
| | =(+] | 52|BD.BEH: below ms_print’s threshold in 1+ places
| =& ‘ 943.929‘ 02.67% I char‘s:;:ﬂ::f::::;l:g_it.:F:fgfj:::::‘:dchar‘bl:char‘. char*, std::allocator=char= consté, basic_string.tcc:150
| -=i+) | 1.946| 20, 1% below ms_print’s threshold in 1+ places
=04) |41. az6, 6?2| 13. 95% |Ref1.ex: :ClassBuilderImpl: : AddFunctionMemberichar const*, Reflex::Type const&, woid libReflex.so
-=0+) | 224, EIE\4| 02.33%] |RefLex: cFunctionTypeBuilder{Reflex: Type constE&, Reflex::Type const&) LibReflex. so
std: :wector<Reflex: :Type, std::allocator<zReflex: :Type=
=) 786,088(02.23% 1 =1 _M_dnsert_ausi__gnu_cxx::__nomal_iterator=Reflex::Type*, std::wvector<Reflex: :Type, liblcg_RelationalStorageService.so
std::allocator<Reflex: :Type= = =, Reflex::Type const&)
=i+) 763,440|02.16% | Reflex: :ClassBuilderImpl: : AddTypedefiReflex: :Type const&, char const*) LibReflex. so
=TI 716,715(02.03% | below ms_print’s threshold in 1685 places
_ gnu_cxx: :hashtable=std: :pair<std: :string const* const, Reflex::TypeName*=, std::string const*,
s | o T e e L
=::find_or_insertistd::pair<std::string const* const, Reflex::TypeName'= constk)

(html version of massif report courtesy of G. Petrucciani)

Main problems: slow speed and the large memory overhead.

Massif example
from a standalone
main() that just
loads all libs and
plugins used by
full reco: 25MB
and 1.1M allocs
just from global
ctors (mostly
reflex)!

P. Elmer CHEP 09 Collaboration Meeting 23 Mar, 2009 13

Commiber: HEH_LIVE

@[ile {ommlative == 1%)

% total Tolal talls Function Total bYtES in heap and
i et sl it ber of Allocat}
100.0 643'544'794 §'033'718 main [31 number o ocations

LT

lat profile (self >= 0.015%)

sel | calls Function

3 S0t7200 256 B1'668 =std: ivector<deuble, std::allecator<doublas >::resarve(unsigmed ink) [64]
4.1 26'3T70' 648 236557 std: ivector<DDPExpandediods, std::alloecator<dDExpandediodes »::operator=(std :vector<DDExpandediode, std::allo
i1.86 24'6B46' 408 507463 std: 'basic string<char, std::char_ traitsdchars», std::zallocator<char> >:: Rep:: 5 create(umsigped int, unsigne
3.72 23960408 30247 GdPhysics¥ecter: :FillSecondDerivatives() [152]
2.98 19151 ' 520 37'552 odpllocatorPoel: :Grow() [166]
2.76 17'764' 404 1"263"'6E6 GdsmartVoxelHeader: :Buil ddodes (GdLogical velmma*, GiVoxelLimits, std: :ivector<int, std::allocator<int> > const®*
<. . .=
1.94 12480 460 B01*927 std: ivector=int, std::allocator<int> >:: K insert awx(onu cxx:: normal iterabtor<int®, std;:vecbor<int, std
L
1.64 18'556'440 644 TBuffer::TBuffer (TBuffer: :EHods, int) [269]
o
0.95 h 0BG 424 T6'453 std: vector=GASmartVoxelProxy*, skd: allocator<=G4dSmartVoxelProxy*> >=::coperator=(std::vector<GdSmartVexelProxy
ST

-
) e e e ey 270'568 / 40192560 21'433 4 2 097'958 cdtmartVoxel Headar: :BuildVoxelsfithinLimiis(Cdlogical Vel mn
e Tl e 2'914 120 4 38'959*7H8 2216HY 4 20300097 GdtmartVoxel Headar: :Buil dVoxelslithinlimits({GdLhogical Vel mn
N e R E9T 4Tk 4 A1'646*GHE 1" 61i* 4249 /4 1*w¥3' 6492 GdfmartVoxel Headar: : BuildVoxalsiithinhimits(GdLogical Vol mn
(12} 4.1 30162164 1164 404 / 12°417° 160 1870543 GdSnartVoxelBeader: :Boil diodes (GdLogicalVelime g’ﬂoxalhhi
e) e 127410160 / 12'4830*460 GO1'6Y7 / 601927 gtd: :wector<int, std::allocatercint> >:: M insert amx(_

An example (and abbreviated) igprof heap snapshot report. Again it contains two
flatprofiles (memory allocated from each given function and all of its callees,
allocated memory from each given function itself) and also a call graph.

In this particular example there are 643'544'794 bytes in the heap from 9M(!)
allocations, averaging only 71 bytes/allocation.

P. Elmer CHEP 09 Collaboration Meeting - Prague 23 Mar, 2009

14

Eint profile tammlatime o151 overhead and allgnment Iuss, depending

§ %Ea:i 643'541?%;}1 g 03 'ma spDEta.rrlwous:‘ I} on the allocator‘ For the defau": Ilnux
100.0 643'544'794 .libe start main [2] i
S reasonable estlmate 9M alloc => 72MB!
Flat profile (self >= 0,01%)
% total sel f calls Function
7.8% S0 720' 256 B1'668 =std: :vector<double, std::allocator<double> »::reserve(unsimed ink) [64]
4.1% 26'370'848 21'557 std: ivector<DDExpandediiode, skd::allecator<iDExpandediodes >::operateor=(std. :vector<DhExpandadiiode, std::alle
3,351 24'B46' 408 507463 std: 'basic string<char, std::char traitsdchar>, stid::allocater<char> >:: Rep!: 5 create(imsigned int, unsigne
.72 ! e T T1I5]
2.9% 19151 520 37'552 odallocatorFool: :Grow() [166]
2.76 17764 ' 404 2 1"263'686 GidsmartVoxslHeader: :Buildodes(GdLogical velme*, GiVoxelLinits, std: :vector<int, std: :allocator<ints > const*
<, .=
1.91 12480 160 3 01927 std: ivector<int, std::allocator<int> >:: ¥ _insert awsl{ ognu <¢xx:: normal iterabtor<int*, std::wvecbor<iant, std
Lyaa —
1.64 18'556 ' 440 644 TBuf fer: :TBuffex (TBuffer: :EHods, int) [269] 4
Lo
0.95 B OHG' 424 T6'4583 std: :vector=GAiSsartVoxelProxy*, sid::allocator<G4iSmacrtVoxelProxy*> >:.oparator={std:: veclor<GdSmartVoxelProxy
Ty v

I R 370' 568 / 40°192° 560 31433 / 2097958 GdtmartVoxel Header: :BuildVoxelsHithinLimit s(GdLogicalVoelmn
O=h e 2914120 4 38'9549°%H4 221 hE1 4 20030097 GdSmartVoxel Haadar: :milﬂvoxalsﬂ'ihhiJlLilitH[G-ILoqicalUﬂ]l:l‘l
A S 2089726 4 A1'646CGHE 1"61i'429 / 1*wT3' 6582 GdtmartVoxzel Headar: :Ejilllﬂoxa'lsﬂ'ithinLilits[GILgicalUﬂlm
L1} d.7 30'182" 1564 1 Thd 404 /4 12417760 1870543 GdSnartWVoxelBeader: :Bnil dHodas [Glhnqical%lm*, VoxelLimi
A s s 12417 160 4 12480460 BOi6hT f e0l 927 std: :wector<int, std::allocatercint> >:: M insert aux(_gn

1 - 24MB of strings, mostly from reflex

2 - A large number of (on average) small allocations means significant
overhead, many of these should perhaps be in containers (eg they
are thmgs created at the beginning of the job not event products)

3 - M_insert_aux for vectors implies that resizing of the vector capamty has
probably happened => between 0% and 50% of the allocation isn't used

4 - ROOT 1/0 of course has some opportunities for optimization

P. Elmer CHEP 09 Collaboration Meeting - Prague 23 Mar, 2009

15

1400 T T ‘

Through a combination of “physics = |

. e el . . VSIZE - TThar GEN-SIM-DIGI-L1-HLT
algorithmic”, “algorithmic, but g |5 releases from 30X and 31X release series
technical” and Purely technical Changes 1250 ~ WMJ_I
we've made steady progress on L \ ‘ ‘ _ _
reducing the memory footprint. e

An example: - J—/—‘ e 5
Our GEN-SIM-L1-DIGI-HLT 1050"/;/—,_/-_/ | |

application 1s 150MB slimmer than we = 4 |
0 20 40 60 80 100

were a few months ago. Events processed
GEN-SIM-DIGI-L1-HLT example (recent releases)

An additional ~100MB+ of cruft is identified since some time, but not
yet removed: the default LHAPDF shared library groups together all possible

PDF's and their common blocks, etc. Most jobs don't need most of that and
the result 1s an unnecessarily large BSS segment.

P. Elmer CHEP 09 Collaboration Meeting 23 Mar, 2009 16

Common (technical) 1ssues with memory management, affecting

either dynamic allocations and/or the memory footprint, are:

-

-

Confusion as to how std::vectors work, copying of large data structures

Memory allocation in tight loops, in particular the creation, destruction and
use of vectors, maps, deques, etc

Dynamic allocation of numerous tiny objects
Multiple in-memory copies, strings used in inappropriate places

The use of new-d objects simply to facilitate “no object” (null pointer) as a
possible answer

. and many others! The important thing 1s to use actual, detailed

profiles and go through them very critically, asking questions!

P. Elmer CHEP 09 Collaboration Meeting 23 Mar, 2009 17

Code Size

CMS applications use shared nEeo

. . . . Total Size | Resident Size | Non-resident
hbrarles. The hbrarles themselves CMSSW non-DataFormats |88.5MB (60.8 MB 27.7 MB
are a large fraction of the memory |cwsswpataFormats ~ [s07mB |33.8MB 16.9 MB
footprint, e.g. 200MB 1n reco. externals 61.1MB |27.6 MB 33.5 MB

Total ‘ 2004 MB }122.3 MB 78.1 MB

Observation 1: A lot of code (78.1MB) is non-resident and not used. The
spuriously linked libraries have been removed, so this is just an unfortunate,
but expected, consequence of how we make and use shared libraries.

Goal 1: We would like to make static binaries for several large, standard
bulk-production applications. (Some preliminary work done, but not yet

accomplished.)

P. Elmer CHEP 09 Collaboration Meeting 23 Mar, 2009 18

RECO

Total Size | Resident Size | Non-resident
CMSSW non-DataFormats | 88.5 MB 60.8 MB 27.7 MB
CMSSW DataFormats ’q:ﬂm:' 33.8 MB 16.9 MB
externals 61.1 MB 27.6 MB 33.5MB
Total 2004 MB |122.3 MB 78.1 MB

Observation 2: The data dictionaries (DataFormats) account for a surprisingly
large fraction of the loaded code (50.7 MB ~ 25%). In addition, global ctors
from these dictionaries account for 25-30MB in the heap (from strings).

Goal 2: We have been building the full data dictionaries. Changing to

building —dataonly dictionaries with genreflex gains 20MB 1n library size and
~15 MB 1n heap allocations. We still need to figure out some details of
deploying both the minimal and full dictionaries to support all use cases, though.

P. Elmer CHEP 09 Collaboration Meeting 23 Mar, 2009 19

Code Size — Bloat

RECO

Total Size | Resident Size | Non-resident
CMSSwW non-DataForma 60.8 MB 27.7 MB
CMSSW DataFormats 507MB |33.8 MB 16.9 MB
externals 61.1 MB 27.6 MB 33.5MB
Total 2004 MB |122.3 MB 78.1 MB

Observation 3: Even if some of the bulk cruft described on the previous slides
were to be removed, it still doesn't explain the code size we have. In addition
we have (from perfmon studies) seen that the code bloat may also be playing
poorly with the CPU memory hierarchy and affecting CPU performance.

Strategy: Pursue a better understanding of code bloat in general, how to
identify it and in particular how it affects CPU performance. See next talk by
Giulio Eulisse for more details of our code bloat investigations

P. Elmer

CHEP 09 Collaboration Meeting - Prague

23 Mar, 2009

20

64bit builds

A native 64bit build should show improved performance to additional/larger

registers, reduced function call overhead, reduced -fPIC cost, etc.

We have in fact seen 5-20% improvements in some of our applications

However the transition to production use of 64bit is non-obvious because:

4 Many sites still had 32bit CPU's and (more often) 32bit SLC4 OS deployments - may be
solved this year by SLC5/64bit updates and by simple retirement of older machines

4 We didn't want the complication of validating/deploying both 32bit and 64bit builds

4 Applications run from the 64bit builds appear to require twice the virtual memory of the
32bit applications

Observation: the 64bit builds will be more interesting for us later this year

Strategy: understand the memory use of the 64bit integration build!

P. Elmer CHEP 09 Collaboration Meeting 23 Mar, 2009 21

i
L

'/é \ 64bit vs 32bit memory footprint

2500

* Although the VSIZE doubles for the 64bit 6 event test app

. . . . MB B VS|ZE
applications, the RSS increase is much m RSS
more modest (25-30%) But where does

any of this increase come from?

1500 -

* Most of the VSIZE/RSS difference —_

1000

between 32bit and 64bit comes from a
default IMB alignment of data/text pages,

imposed by 1d for 64bit, visible with pmap 1 sabil
|

as memory segments with no permissions 64bit Id fix 32bit

0 1 ! | ! I I I I I 1 I 1 1 ! I

o 1 2 3 4 5 6 1 2 3 4 5 €6 1 2 3 4 5 &

* With a custom linker script, ~5S00MB can
be removed by relinking the numerous and ® The heap allocation overhead/alignment cost for

very small CMSSW libs (see plot). 64bit is twice that of 32bit, this itself implies an
Another ~100MB would be possible from extra 40-80MB for our applications, plus the 64bit
linking external libs in the same way. pointers themselves imply an extra 20-40MB (e.g.

o for 5-10M allocations in the heap)
* The actual code (text/data) size itself only

increases by a small amount (~5%) from * The good news is that the same things we are doing
32bit to 64bit (at least with gcc3.4.5) for our 32bit applications will help (twice) for 64bit
P. Elmer CHEP 09 Collaboration Meeting - Prague 23 Mar, 2009 22

Multi-core CPU's

I've focused exclusively on the traditional, single application

performance, but of course in the era of increasingly multi-core
CPU's new 1ssues arise:

4 Qur simple approach of running one process/core requires ever
increasing amounts of (main) memory as the number of cores increases

We risk ever increasing problems from poor use of the memory
hierarchy within the CPU's.

See plenary talk by Vincenzo Innocente

Strategy 1: continued focus on understanding and improving the single

application performance and (in particular) the memory utilization
Strategy 2: active involvement in the LCG R&D program on HEP software

on multi-core CPU's

P. Elmer CHEP 09 Collaboration Meeting 23 Mar, 2009 23

Misc things

There are a number of other related things that are part of the overall
CMS strategy for performance improvement, but which I don't have time
to cover:

4 Release by release automated monitoring of performance

+ See the Release Validation talk by Oliver Gutsche and the poster on
Benchmarking by Gabriele Benelli

4 Specific optimizations with respect to ROOT 1I/0O

* See the talk by Benedikt Hegner
4 Compilers (gcc 4.1, 4.3)

P. Elmer CHEP 09 Collaboration Meeting - Prague 23 Mar, 2009 24

Summary

CMS has been actively pursuing improvements to the
performance and efficiency of our software

4 We have made great progress:

A factor of three improvement in the reconstruction time over the past
year as well as continued progress on the simulation, despite ongoing
development.

We have kept the memory footprint close to our 1GB goal

4 In addition we are steadily improving our understanding how and
why we obtain the performance we see and how to improve it
and have developed tools, such as 1gprof, to monitor it in detail

P. Elmer CHEP 09 Collaboration Meeting - Prague 23 Mar, 2009 25

Tools used - standard

* Valgrind/callgrind/kcachegrind

— well known tools, plus a CMS framework service that can be used to
limit valgrind instrumentation to interesting sections of the coders

— precise/reproducible results for before/after comparison

— reasonably fast when profiling a limited piece of code, but slow and
memory intensive when profiling entire applications

* Valgrind memcheck/massif - see later slide

* perfmon - profiling using hardware performance counters

* Learning how to use this (see talk by G.Eulisse)

* For the future: libpfm and selective instrumentation

* Misc tools: nm, size, process pmap/smap, malloc_stats/mallinfo
P. Elmer CHEP 09 Collaboration Meeting 23 Mar, 2009 26

* framework “services” - report per-module time, memory, etc.

* 1igprof
— fast, low overhead, no instrumentation of code required
— sampling performance profiling
* overhead: negligible for speed, tens of MB 1in memory footprint

— accurate memory profiling

* provides information on dynamic memory use, leaks and heap profile

* overhead: 50% for speed, 0(200MB) for memory footprint

— recent developments include a hook for triggering heap
profiles on demand (e.g. from a framework service)

P. Elmer CHEP 09 Collaboration Meeting 23 Mar, 2009 27

Software Development Model

3e+06

Our software development model shapes 1n CMSSW SLOC vs. fme
2.5e+06 | Other mmm
part how we pursue better performance: oL
. 2e+06 - Perl
4 relatively large number of developers, Java. m—
. . 1.5e+06 1 Fortran
the codebase grows relatively quickly Crt

1e+06 -

4 most people developing software don't .., |

necessarily consider themselves .

“software developers” as such N N

300

Number of people committing to CVS each month

4 Software releases support both sandbox — 2so | el everentie perod: 623 A A

style development and production 200 |1
application building via python configs =o{

100 4

4 Releases are divided into >1100
packages, each with its own shared

50

libraries/plugins

P. Elmer CHEP 09 Collaboration Meeting - Pra

