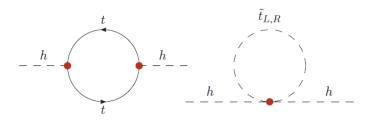
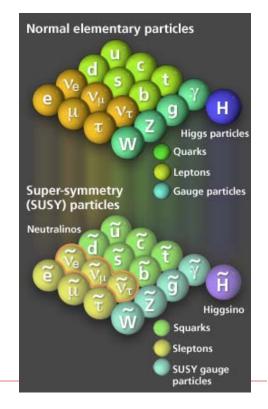


Search for Supersymmetry in Hadronic Final States with the CMS Detector at the LHC

Anwar A Bhatti The Rockefeller University CMS Collaboration 2nd International Conference on Particle Physics Istanbul, Turkey June 23, 2011

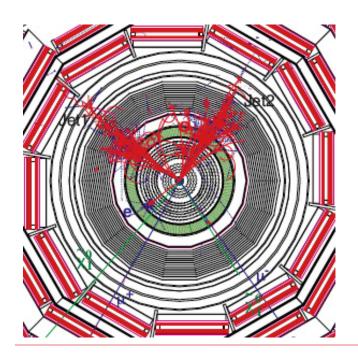

Supersymmetry (SUSY)

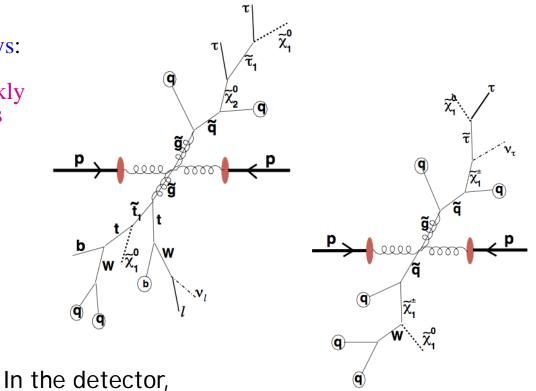


- SUSY is a fundamental global symmetry between fermions and bosons.
 - Each fermion has a boson super partner, and vice versa
 - Higgs mass stabilizes against loop correction (fine tuning problem)
 - Modifies running of SM gauge couplings just enough to give "Grand Unification" at single scale
 - SUSY is broken (sparticles have not been seen)

MSSM: Simple SUSY model consistent w/ SM

- R-parity conservation
 - $R=(-1)^{2S+3B+L}$
 - Sparticles produced in pairs, decay to an odd number of Lightest Supersymmetry Particle (LSP)
 - LSP is a dark matter candidate
- SUSY breaking
 - mSUGRA, GMSB, ...





Experimental Signature

- Signature: MultiJets + MET
- Squarks & Gluinos cascade decays: produce a number of quarks and gluons, leptons and possibly weakly interacting stable neutral particles (WIMP).

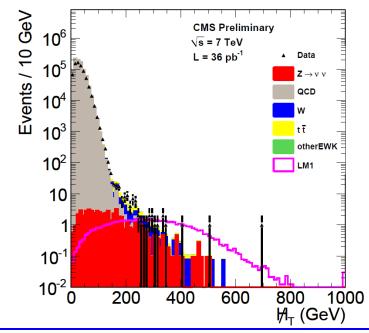
HUM

WIMPs / Lightest SUSY particles appears as the momentum imbalance in the transverse plane (Missing ET!)

- Fully hadronic searches
 - SUS-10-005: Inclusive search in jets + MET (>=3 jets)
 - arXiv:1101.1628: Search in jets+MET with α_{T}
 - SUS-10-009: Inclusive search with ``Razor variables''
 - SUS-10-011: Search in b-tagged jets + MET with α_T
- Searches with leptons
 - SUS-10-006: Search with single lepton + jets + MET
 - arXiv1104.3168: SUS-10-004: Search with same sign dileptons + jets + MET
 - arXiv1103:1348, SUS-10-007: Search with opposite sign dileptons
 - SUS-10-008: Search with multileptons
- Searches with photons
 - arXiv:1103.0953, SUS-10-002: Search in Jets+MET+diphotons
 - SUS-11-002: Search with lepton + photon + MET

Analysis written in blue are highlighted. Full results are available on: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

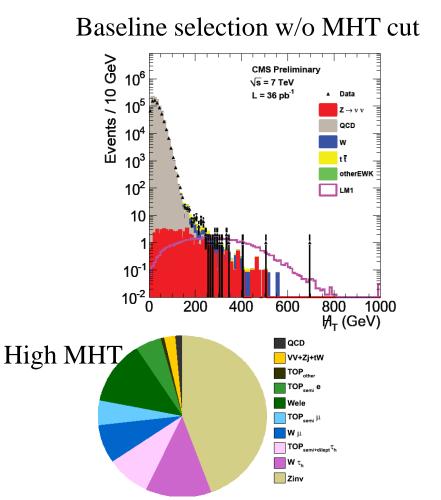
Event Selection:


- ≥ 3 jets
 - $|\eta| < 2.5, P_T > 50 \text{ GeV}$
- Veto isolated e/mu
 - Suppress W, Z & Top BGs
- $\Delta \varphi(MHT, j1, 2, 3) > 0.5, 0.5, 0.3 \text{ (rad)}$
 - Suppress QCD background
- Baseline:
 - HT>300 GeV, MHT>150 GeV
- Search Selection:
 - HT>300 GeV, MHT>250 GeV
 - HT>500 GeV, MHT>150 GeV

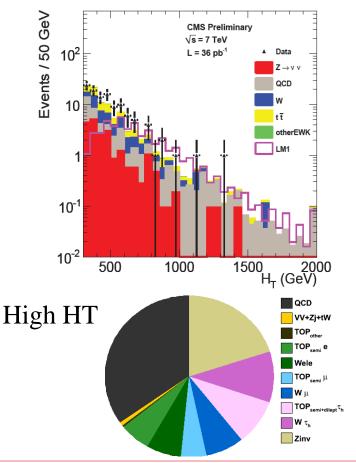
Main Backgrounds:

- QCD
- Top & W+jets
- $Z(\rightarrow vv)$ +jets

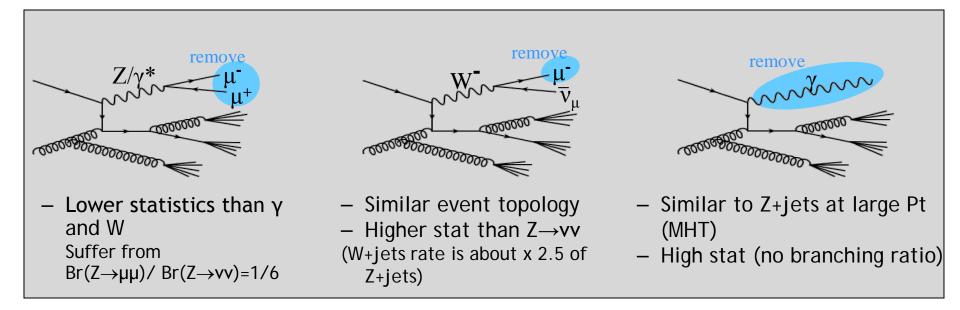
Determined by data-driven techniques

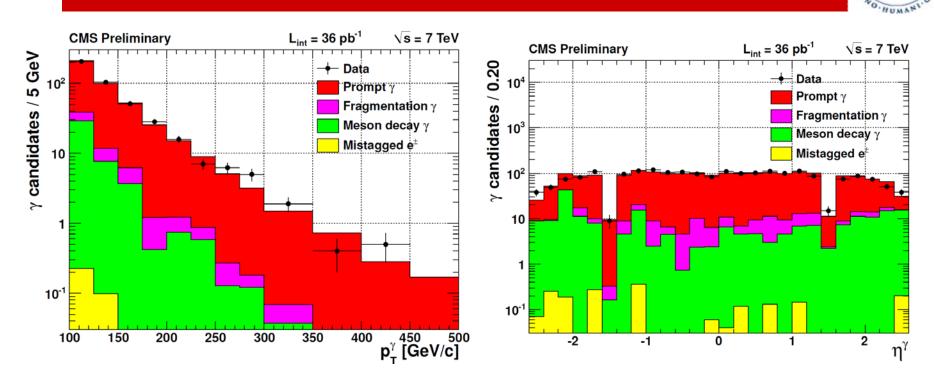

MC-based backgrounds for illustration.

LM1*: $m_0=60$ GeV, $m_{1/2}=250$ GeV, $A_0=0$, tanB=10, sign(µ)>0 m_gluino=611, m_squark=599, m_LPS=96 GeV



An out-of-box comparison of Data vs MC for search variables HT and MHT

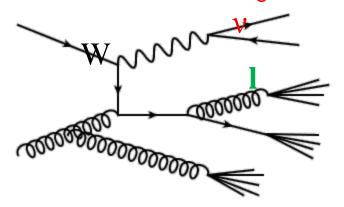

Baseline selection


- $Z(\rightarrow vv)$ + multijets: Irreducible background in this search
- Three different methods using boson+jets were employed to obtain the data-driven estimates of this background (substitute boson with MHT)

Cross check of different channels is important as they have different sensitivities to potential new physics signal

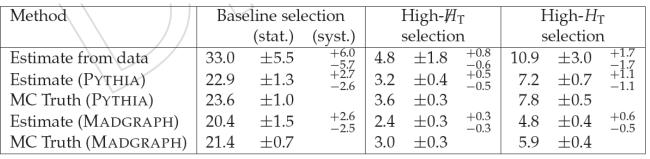
Z Invisible From Photons

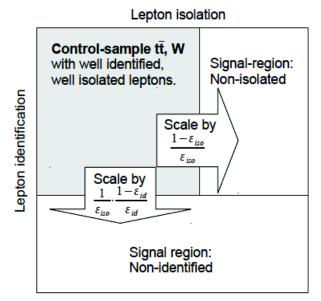
	# events in γ +jets	# $Z \rightarrow \nu \bar{\nu}$ events	$\# Z \rightarrow \nu \bar{\nu} \text{ events}$
	data sample	predicted	from simulation
Baseline selection	72	26.3 ± 3.2 (stat.) ± 3.6 (syst.)	21.2 ± 1.4
High-∦ _T selection	16	$7.1 \pm 1.8(\text{stat.}) \pm 1.3(\text{syst.})$	6.3 ± 0.8
High- $H_{\rm T}$ selection	22	$8.4 \pm 1.8(\text{stat.}) \pm 1.4(\text{syst.})$	5.8 ± 0.7


ATING 10

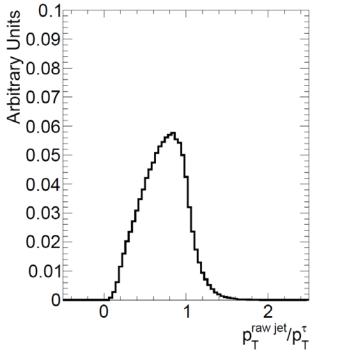
THE ROCKEFELLER UNIVERSITY

Missing ET /MHT

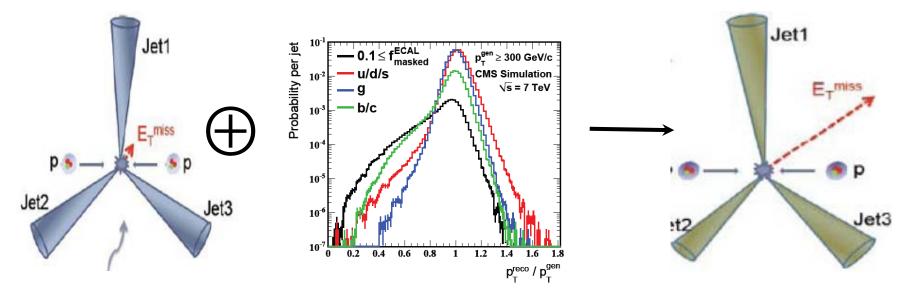



Veto leptons (e,µ) to suppress BGs, still occasionally fail to find and veto leptons. Hadronically-decaying taus also constitute BG

- Leptons failing the lepton veto contribute to background
- There can be 3 reasons to lose leptons
 - the lepton is not reconstructed
 - not isolated
 - out of acceptance
- Start with a control sample of events with exactly one muon
- Measure the identification and isolation (in)efficiencies from data
- Scale the control sample according to the measured (in)efficiencies from data



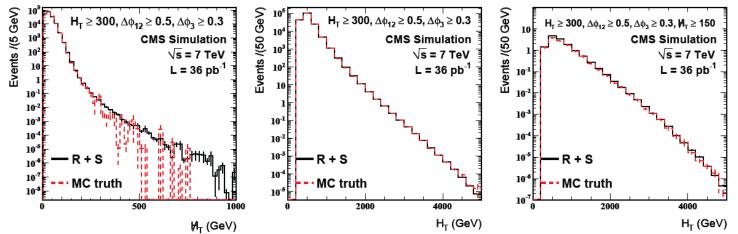
- Start with a muon+jets sample
 Replace the muon by tau response template derived from MC
- Recalculate HT and MHT including this expected energy from Tau
- Correct for
 - muon acceptance
 - Trigger efficiency, Reco efficiency
 - BR(W \rightarrow Tau)/BR(W \rightarrow mu) * BR(Tau->Hadrons)



	Predicted W/tt $\rightarrow \tau_{hadr}$
Baseline selection	22.3 ± 4.0 (stat.) ± 2.2 (syst.)
High-∦ _T selection	6.7 ± 2.1 (stat.) ± 0.5 (syst.)
High- $H_{\rm T}$ selection	8.5 ± 2.5 (stat.) ± 0.7 (syst.)

 Jet Response functions can be used to smear a sample of perfectly balanced events and get back the QCD sample as measured in Data.

- Requirement : Full jet response (including tails) measured from data to rebalance and resmear the multijet events.
- Resolution is measured using Gamma+Jets events (low pT) and DiJet events (high pT)

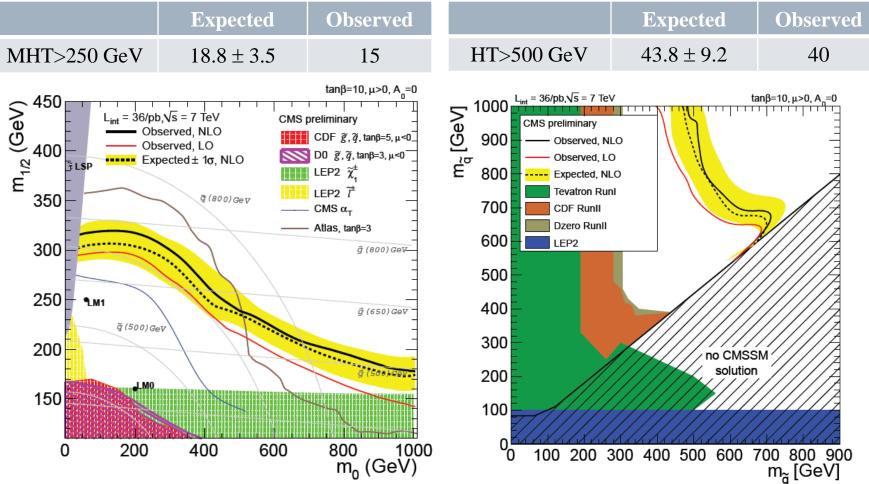


 Step 1 : Rebalance the data events (jets with Pt>10 GeV) using jet Pt resolutions by maximizing likelihood, L_{Jets} subject to constraint MHT=0 ===> create the pseudo-particle-level QCD events

$$\mathsf{L}_{\mathsf{jets}}(\mathsf{p}_{\mathsf{T},1}^{\mathsf{true}}, \dots, \mathsf{p}_{\mathsf{T},n}^{\mathsf{true}}) = \prod_{i=1}^{\mathsf{n}} \mathsf{r}(\mathsf{p}_{\mathsf{T},i}^{\mathsf{reco}} | \mathsf{p}_{\mathsf{T},i}^{\mathsf{true}})$$

 Step 2 : Smear rebalanced jets with Pt>10 GeV with resolution functions R+S predicts full event kinematics (jet Pt and angular distributions)

 Contamination by SM & Signal processes with real MHT is negligible as such events are made "QCD like" by rebalancing


Method	Baseline		High-∦ _T		High-H _T	
	selection		selection		selection	
$Z \rightarrow \nu \bar{\nu}$ from γ +jets	26.3	± 4.8	7.1	±2.2	8.4	±2.3
$t\bar{t}/W \rightarrow e, \mu + X$ lost-lepton method	33.0	± 8.1	4.8	±1.9	10.9	± 3.4
$t\bar{t}/W \rightarrow \tau_{hadr} + X \text{ method}$	22.3	± 4.6	6.7	±2.1	8.5	± 2.5
QCD Rebalance+Smear method	29.7	± 15.2	0.16	± 0.10	16.0	±7.9
QCD factorization method	25.2	± 13.4	0.4	± 0.3	17.3	± 9.4
Total data-driven background	111.3	± 18.5	18.8	±3.5	43.8	±9.2
Observed in 36pb^{-1} of data	111		15	3	40	
95% C.L. limit on signal events	40.4		9.6	e	19.6	>
A	40.4		9.6		19.6	>

No excess of data events over expected Standard Model prediction observed \otimes Setting limits.

Hadronic Search in Jets + MHT

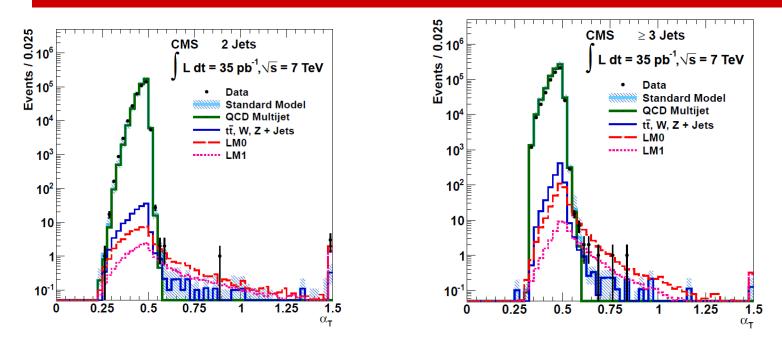
- Results expressed in terms of 95% CL in CMSSM
- Extend limit from Tevatron searches

Anwar Bhatti ICPP-Istanbul II

 $\alpha (\text{Randal-Tucker-Smith}) \quad \text{arXiv:0806.1049}$ $\alpha = E_{\text{T}}^{j2} / M_{\text{inv}}^{j1,j2} \quad \alpha = \frac{E_{\text{T}}^{j2}}{\sqrt{2E^{j1}E^{j2}(1-\cos\Theta)}}$ $\text{Transverse } \alpha_{\text{T}}$ $\alpha_{\text{T}} = E_{\text{T}}^{j2} / M_{\text{inv}}^{j1,j2} \quad \alpha_{\text{T}} = \frac{E_{\text{T}}^{j2}}{\sqrt{2E_{\text{T}}^{j1}E_{\text{T}}^{j2}(1-\cos\Delta\phi)}}$

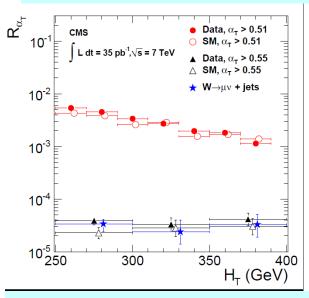
SIGNAL topology

QCD: back to back jets i.e. $\cos\Delta\phi < 1 \rightarrow \alpha(\alpha_T) \le 0.5$. SUSY: $\alpha(\alpha_T)$ can be > 0.5.


Generalized to multijet events by reconstructing psuedo jets J1 and J2 from primary jets from clustering algorithm

N-Jet system: $\alpha_{T} = \frac{1}{2} \frac{H_{T} - \Delta H_{T}}{M_{T}}$, $\Delta H_{T} = E_{T}(PJ_{1}) - E_{T}(PJ_{2})$

α_T Search


•Event Selection:

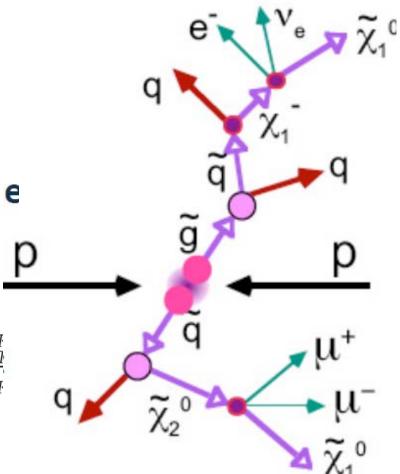
- At least twoAK5 calorimeter jets $p_T > 50$ GeV and $|\eta| < 3.0$
- \bullet Two leading jets with $p_T\!\!>100$ GeV, leading jet $|\eta|<\!\!2.5$
- Veto on isolated leptons and photons
- $H_T > 350 \text{ GeV}$ 13 events

Inclusive background estimate

 $R_{\alpha_{\rm T}} = N(\alpha_{\rm T} > \theta) / N(\alpha_{\rm T} < \theta)$ • $\theta = 0.51$ QCD dominated, ratio falls with HT • $\theta = 0.55$ EW dominated, ratio flat with HT • $\theta = 0.55$ almost free of QCD Assume $R_{\rm R} = \frac{R_{\alpha_{\rm T}}({\rm H}_{\rm T} > 350)}{R_{\alpha_{\rm T}}({\rm H}_{\rm T} > 300)} = \frac{R_{\alpha_{\rm T}}({\rm H}_{\rm T} > 300)}{R_{\alpha_{\rm T}}({\rm H}_{\rm T} > 250)}$ $N({\rm H}_{\rm T}350) = 9.4^{+4.8}_{-4.0} \text{ (stat) } \pm 1.0 \text{ (syst)}$

Impendent EWK background estimations

$$\begin{split} & \mathcal{N}(W + \text{jets}, t\bar{t}) = 6.1^{2.8}_{-1.9}(\text{stat}) \pm 1.8(\text{syst}) \text{ from } W(\mu\nu) + \text{jets} \\ & \mathcal{N}(Z(\nu\nu) + \text{jets}) = 4.4^{+2.3}_{-1.6}(\text{stat}) \pm 1.8(\text{syst}) \text{ from } \gamma + \text{jets (see later)} \\ & \text{Total: } 10.5^{+3.6}_{-2.5} \text{ in agreement with inclusive prediction } 9.4^{+4.8}_{-4.0}(\text{stat}) \pm 1.0(\text{syst}) \\ & \text{Further x-checks: } W(\mu\nu) \text{ from } \gamma \text{ and } Z(\nu\nu) \text{ from } W(\mu\nu) \text{ all within agreement} \end{split}$$


RAZOR

- Assume heavy particle pair produce and decay in LSP+X
- Define two variables related to the mass scale $M_{\pi}^2 M_{\pi}^2$

$$M_{\Delta} \equiv \frac{M_{\tilde{q}}^2 - M_{\tilde{\chi}}^2}{M_{\tilde{q}}}$$

- M_R is estimator of $M_{\Delta_{i}}$ peaks at mass scale.
- M^{R}_{T} transverse mass with endpoint at M_{Δ}
- Use dimensionless ratio $R \equiv \frac{M_1^R}{M_1}$
- Reduce event into two mega jets by clustering the visible decay products
- In terms of mega jets, event resembles $pp \rightarrow \tilde{q}\tilde{q} \rightarrow j_1 j_2 \tilde{\chi}_1^0 \tilde{\chi}_1^0$

R and M_R distributions for different events

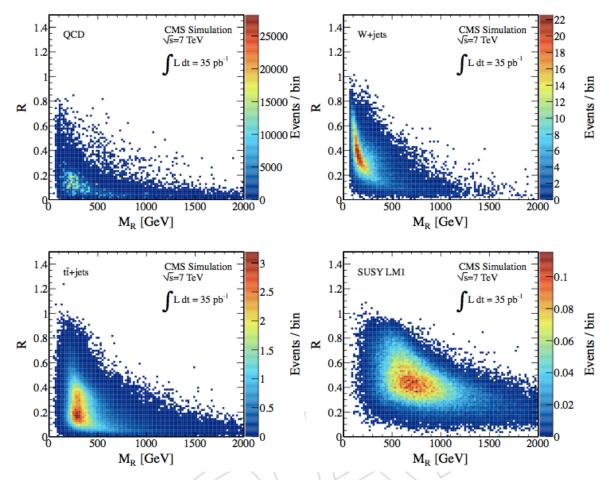
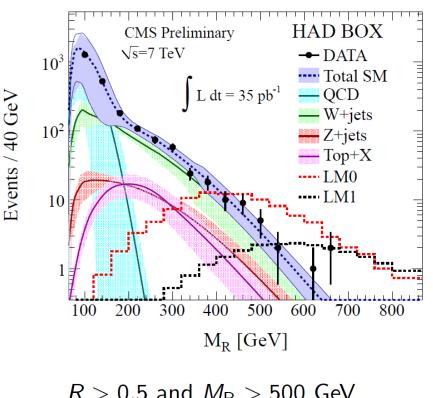


Figure 1: The razor plane: M_R versus R yields for 10 pb⁻¹ Monte Carlo simulated samples: QCD multijets (top left), W+jets (top right), t+X (bottom left) and a CMS SUSY benchmark model (LM1 [8]) with $M_{\Delta} = 597$ GeV.


THE ROCKEFELLER UNIVERSITY

Basic Selection:

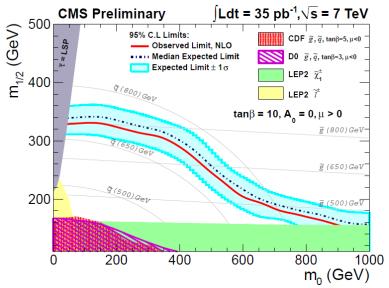
- •At least two jets PtJet>30 GeV, $|\eta| < 3.0$
- Classify events as hadron, muon and electron boxes.
- Decompose event in two hemispheres.
- Cluster particles in each hemisphere into a mega-jet
- Require $\Delta \phi$ (mega-jets) < 2.8

Background:

- Shapes from lepton boxes
- QCD shape from low threshold dijet data
- Z(vv) Shapes from 2^{nd} component of W
- Z(ll) Efficiencies from data
- Fit in $80 < M_R < 400$ GeV region
- Normalization from lepton boxes
- Extrapolate to high M_R region



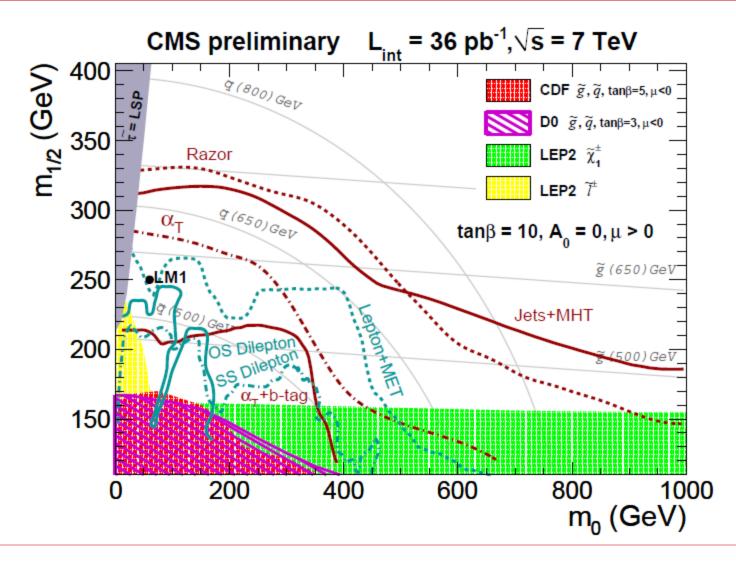
$N > 0.5$ and $M_R > 500$ GeV						
M_R cut	Predicted	Observed				
$M_R > 500 \text{ GeV}$	5.5 ± 1.4	7				


α_T and RAZOR results

- Kinematic variable α_{T}
 - Optimized for fast discovery

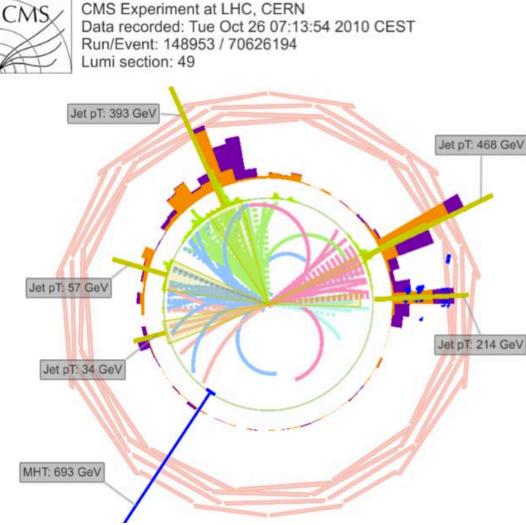
$$\alpha_{T} = \frac{E_{T,j2}}{M_{T,j12}} = \frac{\sqrt{E_{T,j2} / E_{T,j1}}}{\sqrt{2(1 - \cos \Delta \phi)}}$$

- ``Razor'' variables: M_R & R
 - Designed to characterize pair-production of heavy particles
 - Combine all particles into two hemispheres, boost back to rest frame


These kinematics-based searches are complementary in approach to the jets + MHT search which is based on understanding the detector in detail.

arXiv:1101.1628, CMS-PAS-SUS-10-003 & 11-001 CMS-PAS-SUS-10-009

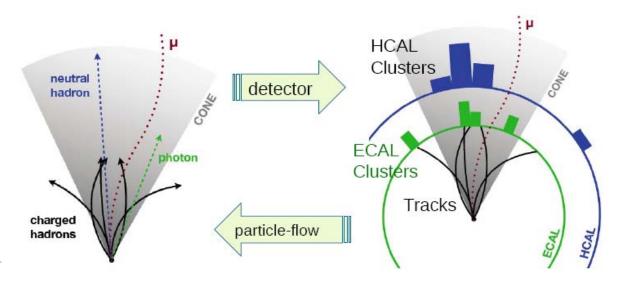
Anwar Bhatti ICPP-Istanbul II



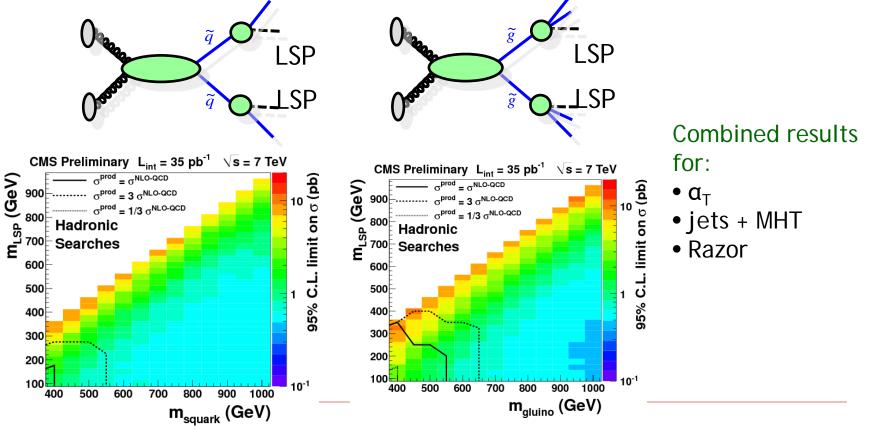
Summary

- CMS has performed hadromic SUSY search using three different methods using 2010 data.
- SM backgrounds are directly measured from the data using minimal information from the Monte Carlo event generators.
- No excess of events over the SM expectation is observed.
- These data are used to further constraint the susy parameter space.
- Ready and looking forward to discovering new physics in 2011.

An interesting event



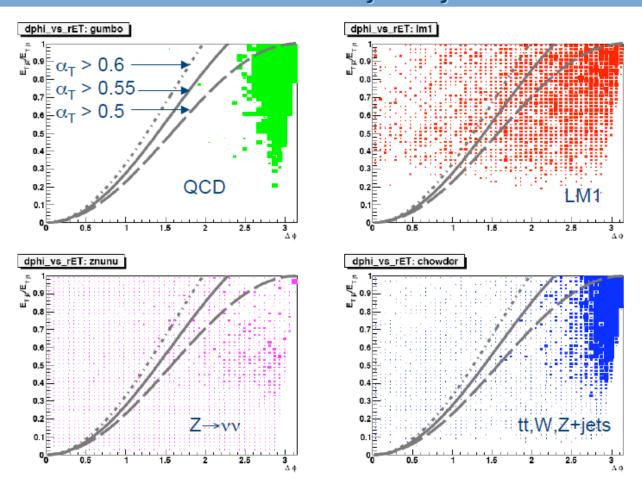
- MHT = 693 GeV
- HT = 1132 GeV
- M_{eff} = MHT+HT = 1.83 TeV
 - No b-tagged jet
 - No isolated lepton
 - Incompatible with W or top mass
 - Invisible Z???


- In this search, all physics objects (jets, leptons, HT, MHT etc) are reconstructed with the particle flow algorithm
- Basic idea:
 - Reconstruct and identify all different types of particles
 - Apply corresponding calibrations
 - The list of "particles" is given to the jet clustering and missing ET (MET) reconstruction algorithm

Simplified Model

- Focus on topology instead of underlying physics model
- Any model with same topology (parent particle mass, decay chain, daughters mass) can be "easily" compared with experimental results.

Anwar Bhatti ICPP-Istanbul II


TING

HUMAN

Relation of α_T to E_{Tj2}/E_{Tj1} and $\Delta \phi$

Anwar Bhatti ICPP-Istanbul II

Data-Driven Background Estimates

Invisible $Z (\rightarrow v v) + Jets$

- Remove the identified boson (photon/W/Z) to mimic neutrino
- Photon+Jets : high event yield (use photon/Z correction from theory)
- $Z \rightarrow l l + Jets$ (straightforward prediction but limited by statistics)

Top / W + Jets

- Top/W (\rightarrow lost lepton + v) + Jets :
 - Lepton is not identified or is outside detector acceptance. Estimated from $W \rightarrow \mu \nu$ sample.
- Top/W (\rightarrow hadronic $\tau + \nu$)+ Jets :
 - Estimated by replacing μ in W $\rightarrow \mu\nu$ events with τ using a τ response template

QCD MultiJets (jet mis-measurements resulting in imbalance)

- R+S : rebalance event and smear 'rebalanced' sample with jet resolutions
- Factorization : extrapolate two-variable correlation to signal region