
28/3/2012

Adding Concurrency to
LHC Software
Many-core architectures for LHCb, 25 April 2012
Pere Mato/CERN

Wednesday, April 25, 12

Outline
✤ Why we need to do something
✤ What we think we need to do
✤ How and what tools and technologies to use
✤ When can/should we do it

2

Wednesday, April 25, 12

Why?
✤ We need to adapt current data processing applications to

the new many-core architectures (~100 cores)
✤ No major change expected in the overall throughput with respect

trivial one-job-per-core parallelism
✤ Reducing the required resources per core

✤ I/O bandwidth
✤ Memory requirements and locality
✤ Connections to DB, open files, etc.

✤ Reduce latency for single jobs (e.g. trigger, user analysis)
✤ Run a given job in less time making use of all available cores

✤ Window of opportunity with the long LHC shutdown
3

Wednesday, April 25, 12

Concurrency at what level?
✤ Concrete algorithms can be parallelized with some effort

✤ Making use of Threads, OpenMP, MPI, GPUs, etc.
✤ But difficult to integrate them in a complete application
✤ Performance-wise only makes sense to parallelize the complete

application and not only some of the parts

✤ Developing and validating parallel code is very difficult
✤ ‘Physicists’ should be saved from this
✤ Concurrency will limit what can and can not be done in the

algorithmic code (strong policies required)

✤ At the Framework level you have the full overview and
control of the application

4

Wednesday, April 25, 12

Concurrent ‘Algorithm’ processing
✤ Ability to schedule modules/algorithms concurrently

✤ Full data dependency analysis would be required (no global data
or hidden dependencies)

✤ Need to resolve the DAGs (Direct Acyclic Graphs) statically and/or
dynamically

✤ Not much to gain with today’s existing ‘Algorithms’
✤ Potential ‘concurrency’ factor rather low

5

Time

Input Processing Output

Wednesday, April 25, 12

Example: LHCb Reconstruction

✤ DAG of Brunel
✤ Obtained from the existing code

instrumented with ‘Auditors’
✤ Probably still missing ‘hidden or

indirect’ dependencies (e.g. Tools)
✤ Can give an idea of potential

for ‘concurrency’
✤ Assuming no changes in current

reconstruction algorithms

6

Wednesday, April 25, 12

Many ‘Concurrent’ Events
✤ Need to deal with the tails of sequential processing
✤ Introducing Pipeline processing

✤ Exclusive access to resources
or non-reentrant algorithms
can be pipelined
e.g. file writing

✤ Current frameworks will need to
be adapted
✤ Design or use a powerful and

flexible scheduler
✤ Need to define the concept of

an “event context”
✤ Nice results from Markus Frank

7

Time

Wednesday, April 25, 12

M.Frank CERN/LHCb 21

Model Result Top 4: 
Max. 10 instances of top 4 algorithms"

❍  Max 10 events in parallel!
❍  TOP 4 algorithms reentrant 

with max 10 instances!
❍  Cut 25 msec [4.3 %]!
Theoretical limit  

"
"
Max evts > 3  

Speedup up to ~30"
!
Max 2 events 

1 event * 2"
"
Max 1 event 

Algorithmic parallel limit 
Speedup: ~7"

!
One thread  

= classic processing (t1)"

Wednesday, April 25, 12

Algorithm Parallelization
✤ In current applications there is always an ‘Algorithm’ that

takes a large fraction of the total processing time
✤ Limiting the application scaling for many-cores

✤ Several options:
✤ Make the algorithm fully ‘re-entrant’ ==> probably very difficult
✤ Instantiate several copies of the ‘Algorithm’, each one working on a

different event concurrently
✤ Parallelize the Algorithm, for example parallelizing the main loop

over data items (e.g. ‘TrackFit’ Algorithm is looping over ‘Tracks’)

✤ Nice results from Thomas Hauth and Danilo Piparo

9

Wednesday, April 25, 12

CERN I EKP16

Triplet Seeding in CMS: Parallel Execution

Before running the multi-threaded code part, the Hit-Pair list is partitioned into N equally

sized work chunks

The available threads process the HitPair Blocks via TBB's parallel_for method and

stores the resulting TripletSeeds in a Block-local Result List

TripletSeeds resulting from a HitPairs Block are merged into the output collection

respective to their order in the input collection

This guarantees the order of the output is not depending of the amount of threads

Loop over HitPairs Blocks

Loop over DetLayers

Loop over Layer Hits

Is Compatible ?

Hit Pairs

Block Result List

HitPairs Block 1

HitPairs Block 2

HitPairs Block 3

Triplet Seeds

Ordered

Reduce

Partition

HitPairs Block N

Multi-Threaded Part

> Load Hits from this Layer

CERN I EKP11

Scaling behavior of the Implementation

Higher-than-expected scaling from 1 to 2 cores, probably due to the positive effects of

using the L1/L2 caches of two cores simultaneously

Hyperthreading

The triplet seeding takes about 10% of
the runtime in the serial version

Wednesday, April 25, 12

What?
✤ We need to add ‘concurrency’ to our data processing

applications at 3 levels at the same time
✤ Event-level parallelism
✤ Algorithm-level parallelism
✤ Sub-algorithm-level parallelism (including I/O)

✤ Essential to ‘standardize’ on a single concurrency
programming model to ensure efficient and balanced use
of resources

✤ LHC experiments would like to see a set of functional
components from where to pick and choose what to
incorporate into their frameworks
✤ Experiments have a huge investment in ‘algorithmic’ code and

configuration based on a specific framework
11

Wednesday, April 25, 12

How?
✤ We do not know [yet]
✤ So, we organized a workshop...

✤ Workshop on Concurrency in the many-cores era, 21-22 November
2011, Fermilab
✤ Understand the requirements and constraints of current and future experiments
✤ Assess the interest for a joint development
✤ Determine the degree of overlap between the needs and medium to long term

plans of the Fermilab and CERN experiments
✤ Identify potential technologies and ensure that all the relevant solutions are

being explored

12

Wednesday, April 25, 12

http://indico.fnal.gov/conferenceDisplay.py?confId=4986
http://indico.fnal.gov/conferenceDisplay.py?confId=4986

Outcome of the FNAL workshop
✤ Interest for common effort to make rapid progress on

exploratory R&D activities during 2012
✤ Aiming to share a common concurrency model
✤ Identified a number of ‘demonstrators’ to exercise

different capabilities in a small scale with clear
deliverables, metrics, and work in short cycles of a few
months long

✤ Setup regular bi-weekly meetings (Wed at 17:00 CET)
✤ Forum on Concurrent Programming Models and Frameworks
✤ Understanding common requirements and constraints
✤ Share knowledge and learn from each other
✤ As a community, identify what tool/library/model works and

what does not for our applications 13

Wednesday, April 25, 12

http://concurrency.web.cern.ch/meetings
http://concurrency.web.cern.ch/meetings

Demonstrators
✤ Created a web site

concurrency.web.cern.ch

✤ Current set of proposed
‘demostrators’

✤ details can be found in
slides from
presentations

14

Wednesday, April 25, 12

http://concurrency.web.cern.ch
http://concurrency.web.cern.ch

Some of the “Demonstrators” that
my group is involved directly

Wednesday, April 25, 12

Virtualization
✤ Unmodified applications can run on many VM instances

exploiting the many cores of new CPUs
✤ Virtualization can

also help in
reducing
memory needs
✤ KVM/KSM

provides a
mechanism to
share the same
memory pages
between guests

16
Forum on Concurrent Programming Models and Frameworks, CERN, January 18, 2012

•  Near term
!  Develop tools to benchmark application performance and resource

consumption while running in virtualized environment
•  Basic tools/scripts exist, need to be properly packaged (2 weeks)

!  Integrate LHC application(s) benchmarks into standard CernVM test
suite for regression testing

•  Testing framework developed last year as GSOC project
•  Here we need some input and guidance form the experiments
•  Investigate potential for memory sharing across virtual machines
•  Possible task for a summer student (6 months)

•  Mid to long term
!  Depending on technology evolution and availability of the hardware
!  Investigate possible use of GPGPU/MIC from VM environment
!  End of the year

4
CernVM Team

(Predrag Buncic)

Wednesday, April 25, 12

Whiteboard Demonstrator
✤ Knowing the dependencies

of algorithms (i.e. data
transformations) determines
when things can be
scheduled without conflicts
✤ Defining a single memory

model essential for a parallel
application

✤ Plan on testing algorithm scheduling
based on TBB (Threading Building Blocks), libdispatch
(GCD)
✤ Update in today’s Concurrency Forum Meeting

17

EventStore EventStore

Algorithm Algorithm Algorithm

Logging

Configuration

Persistency

Data Store

B-Field

Geometry

Material

Random

Scheduling

const

non-const

Services

D
ir

ec
t

A
cy

cl
ic

 G
ra

p
h

Benedikt Hegner
Riccardo Bianchi

Wednesday, April 25, 12

Parallelization Opportunities
In Math Libraries

18

✦ Parallelization in tools for data analysis and concentrated on likelihood
evaluation (fitting)
✦ most time consuming tasks and immediate benefit for end-users
✦ other analysis tools (e.g. multi-variate tools) would benefit as well from same

code optimization
✦ very useful findings from prototype developed by Openlab
✦ opportunity to work on optimize and parallelize algorithms at the same time

✦ Whenever possible, a parallelized version of an algorithm should be
provided
✦ Example of Minuit. Parallel version can be used without changing user code

✦ Need to improve also thread safety of existing code
✦ Started investigation of parallelization in vector and matrix operations

(reconstruction or simulation applications)
✦ vectorization looks promising

✦ Random number generators for parallel applications
✦ Other parallelization opportunities exist but less relevant in HEP

✦ e.g. parallelization of large linear algebra systems
ROOT Team

(Lorenzo Moneta)

Wednesday, April 25, 12

Geant4 Demonstrators

19

G4MT%overview%in%1%slide%

•  G4MT%today%parallelizes%at%the%event%level%
– Sta8c%scheduling%of%events,%per>event%RNG%seed%

•  Goal:%100%%reproducibility%–%or%as%good%as%G4%
•  Threads%share%RO%data:%geometry%and%EM%XS%
– A%small%set%of%classes%is%involved%
– Different%instances%of%most%classes%on%each%thread%

•  Cost%of%extra%worker%(thread)%is%small%frac8on%
of%the%total%memory%footprint%

25/4/12% SFT%Technical%Mee8ng,%5%March%2012% 3%

Summary:(short(term(goals(

•  Adapt(to(external(dispatcher(parallelism(

–  Iden8fy(what(changes(would(be(required(
– Proceed(in(collabora8on(with(G4(experts(

•  Inves8gate(poten8al(for(improved(use(of(

caches(by(‘bunching’(par8cles(by(type(

– Use(sequen8al(Geant4(as(testDbed(
– Check(effect(of(reordering(tracks(–(is(cache(use(
changed(?(Does(CPU(8me(profile(change?(

25/4/12(SFT(Technical(Mee8ng,(5(March(2012(14(

Geant4 Team
(John Apostolakis)

Wednesday, April 25, 12

GPUs also...
✤ Explore the possibility to use GPUs to improve the

performances of specific software algorithms used in
Trigger
✤ Use of GPU in NA62 Trigger (Felice’s talk in this meeting)

✤ Prototype implementation of a radiation transport
algorithm with the Geant4 toolkit using GPUs
✤ Google Summer of Code student granted to work on this

20

Wednesday, April 25, 12

When?
✤ Window of opportunity with the long LHC shutdown
✤ Use 2012 for R&D and

partial prototype
developments
“demonstrators”

✤ End of 2013 have
components ready
for Experiments to
integrate

21

2011

2012

2013

2014

LHC
shutdown

Today
R&D, technology

evaluation and design of
critical parts

Services and Integration
Prototype I

Initial adaptation of LHC
and Geant4 applications

Complete Prototype II
with experience of

porting LHC applications

First production quality
release

Project definition

Wednesday, April 25, 12

Summary
✤ I do not need to convince you why we need to do it
✤ I tried to convince you that we need to add ‘concurrency’

at 3 levels (event, algorithm, sub-algorithm)
✤ Adding it at one level or two is not sufficient for typical ‘offline’

data processing applications
✤ Common concurrency model is essential

✤ R&D activities organized as a set of “demonstrators”
executed by different teams in the LHC experiments/Labs
✤ Forum on Concurrency Programming Models and Frameworks
✤ Coordinating the interested people to cover all aspects
✤ Coming with conclusions (yes/no) within few months

22

http://concurrency.web.cern.ch/

Wednesday, April 25, 12

https://concurrency.web.cern.ch
https://concurrency.web.cern.ch

