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A new method of determination of charged particle energy is 

considered. This method is based on measurement of a 

waveguide mode frequency.  

V.V. Poliektov, A.A. Vetrov, K.A. Trukhanov, V.I. Shvedunov, 

Instruments and Experimental Techniques  51, p. 191 (2008).  

A.V. Tyukhtin, S.P. Antipov, A. Kanareykin, P. Schoessow, 

PAC’07, Albuquerque, July 2007, p.4156.  

A.V. Tyukhtin, Tech. Phys. Lett. 34 (2008) 884.  

For this method, it is important to provide enough strong 

dependency of mode frequencies on Lorenz-factor of the 

charged particle. Earlier we developed two variants of this 

method. One of them is based on use of a thin dielectric layer. 

Other variant is based on use of a waveguide loading with a 

system of wires coated with a dielectric material. Here we offer 

a new version consisting in application of a circular waveguide 

with a grid wall.  
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Version 1:   

Thin Dielectric Layer 

The essential progress can be achieved through the use of 

simple non-dispersive isotropic dielectric layer. The key factor 

for this technique consists in optimization of the thickness of 

the layer d=a-b. Dependence of frequencies on particles energy 

increases with decreasing the layer thickness.  

 

A.V. Tyukhtin, S.P. Antipov, A. Kanareykin, P. Schoessow, 

PAC’09,  2009, p.4033.  
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Version 2:  Waveguide with Metamaterial 

Other variant consists in use of some metamaterial.  

A.V. Tyukhtin, Tech. Phys. Lett. 35, p.263 (2009). 

A.V. Tyukhtin, P. Schoessow, A. Kanareykin, S. Antipov, AIP Conf. 

Proceedings 1086 (2009), p.604.  

A.V. Tyukhtin, S.P. Antipov, A. Kanareykin, P. Schoessow, PAC’09,  

2009, p.4033.  

For example, some advantages can be reached with use of a 

system of parallel wires with dielectric coating.  

Tyukhtin A.V., Doil’nitsina E.G., Kanareykin A., IPAC’10, Kyoto, 

Japan, May 2010, p.1071.  
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Theory of this metamaterial: 

Tyukhtin A.V., Doil’nitsina E.G.,   

J. Phys. D: Appl. Phys. 44, 

265401 (2011).  
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Waveguide radius: a  

Wire radius: 0r  

Period for z-wires: zd  

Period for  -wires: d  

 

Version 3 (new):  Grid Waveguide  
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Averaged Boundary Conditions    

M.I. Kontorovich etc., Electrodynamics of grid structures. 

Мoscow, 1987 (in Russian). 

If there are only wires parallel to z-axis:   1

If cells are square                   :    )( ddz  2
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Field of Point Charge 
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Dispersion Equation  

)()( 00 kaKkaI

This equation can have only a single real root  

 

  

          

This root is  presented only in the case when               ,  

that is                 .  

Thus, radiation can be generated only in the case of grid 

possessing both z-wires and φ-wires.  
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Wakefield  (= wave field = radiation field)  
of Thin Gaussian Bunch Moving along the Axis  
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Amplitude of the component           on the  outward surface of 

waveguide depending on γ; magnitudes of                 are indicated 

near the curves.  
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Conclusion 
We consider a new method of determination of charged particle energy. 

This method is based on measurement of a waveguide mode frequency.  

For this method, it is important to provide an enough strong dependency of 

mode frequencies on Lorenz-factor of the charged particle.  

 

Earlier we developed two variants of this method.  

1. Use of a thin dielectric layer.  

2. Use of a waveguide loading with a system of wires coated with a dielectric 

material.  

 

3. New version is waveguide with a grid wall with rectangular small cells. In 

this case a single propagating mode can be generated. Its frequency depends 

on the Lorentz factor enough strongly in wide range.  

 

As well, this structure can be used for generation of a monochromatic 

radiation with tunable frequency depending on the bunch velocity.  
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Thank you for attention! 
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