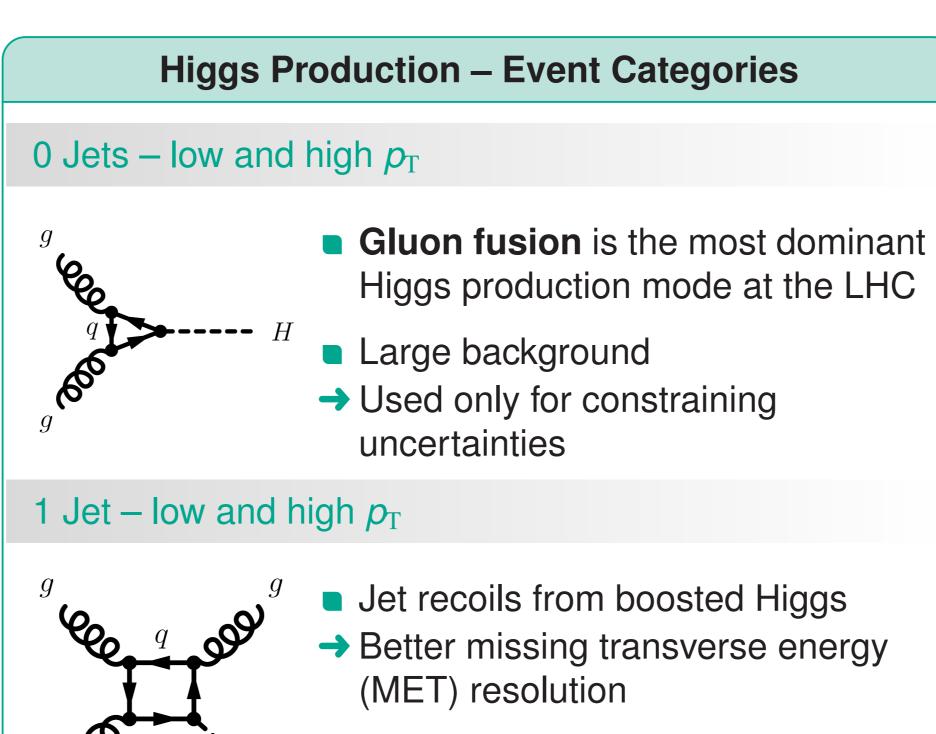


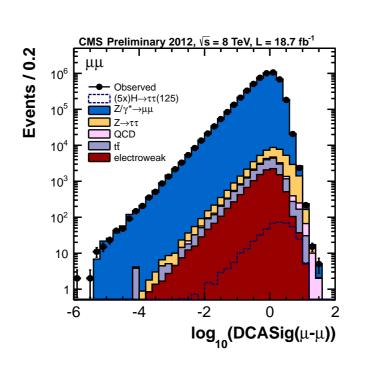
Karlsruhe Institute of Technology


Search for the Higgs Boson Decaying into Pairs of Tau Leptons Further Decaying into Same-Flavour Leptons

The Role of $H \rightarrow au au$ in Higgs Boson Searches

- July 4th, 2012: Observation of Higgs-like boson with mass near 125 GeV
- March 2013: First indications of coupling to tau leptons
- Tau channel important for measurement of the Yukawa coupling of the Higgs boson to fermions
- Up to four neutrinos in the final state complicate the mass reconstruction and therefore also the separability from SM background processes
- Here: Emphasis on same-flavour lepton sub-channel ${\it H}
 ightarrow au au
 ightarrow \mu \mu$

The $H \rightarrow \tau \tau$ Analysis in General

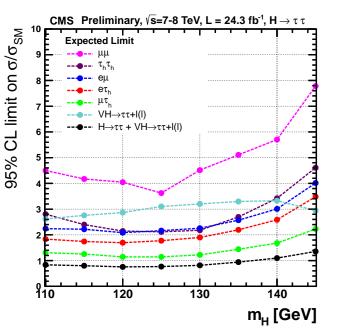


Harder p_T spectrum in Higgs H events compared to Drell-Yan

MVA Selection of Signal-like Events

Discriminating Variables as Inputs for BDTs

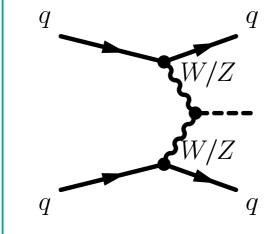
- Dilepton kinematic variables
- Variables evaluating the origin of the MET
- Two important examples:


- Significance of the DCA of the leptons
- → Prompt leptons in $Z \rightarrow \mu\mu$ originate from the same vertex
- → Leptons from τ decays originate from two different secondary vertices

The analysis presented here coresponds to data taken at the CMS experiment at the LHC at center of mass energies of 7 resp. 8 TeV with an integrated luminosity of 24.3 fb⁻¹

Decay Topology and Channels

- Fully leptonic: $e\mu$, $\mu\mu$
- Fully hadronic: $\tau_h \tau_h$
- Missing: ee
- (aim to include soon)
 Associated production: VH



(Expected) sensitivities of individual channels depend strongly on branching ratios background contributions

Background Processes

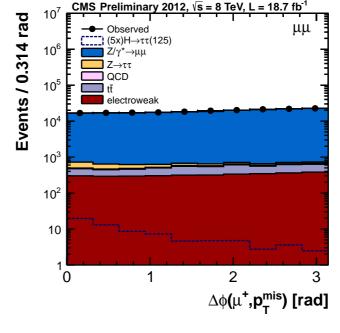
Drell-Yan (most important: $Z \rightarrow \tau \tau$)
 Top-pair
 Diboson
 QCD
 production
 W + jets

Vector Boson Fusion (VBF)

 \boldsymbol{Q}

Two forward jets and low hadronic activity in barrel region
 Clear distinction from SM

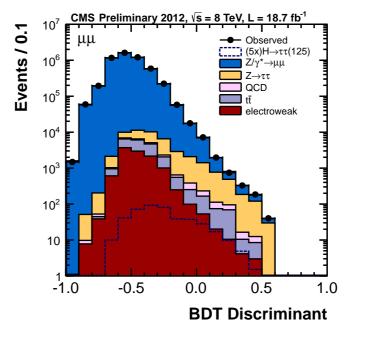
backgrounds


Peculiarities of the $H ightarrow au au ightarrow \mu \mu$ Channel

Challenges

- Small branching ratio: $BR(\tau \tau \rightarrow \mu \mu) \approx 3\%$
- Four neutrinos in final state reduce mass resolution
- Additional overwhelming irreducible $Z \rightarrow \mu \mu$ background: about 95 % after preselection
- → Two main backgrounds to account for:
 - $Z \rightarrow \mu\mu$ as the largest irreducible background
 - $Z \rightarrow \tau \tau \rightarrow \mu \mu$ as the background whose detector signature hardly differs from the one of the Higgs signal

Analysis Strategy

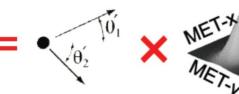

- 1. Event categorisation
- Account for different production processes

- Azimuthal angle between one lepton and the MET
- → Flight directions of leptons and genuine MET in \(\tau\)T events are correlated with each others
- Additional variables describing the two forward jets in the VBF category (mass and distance in the pseudorapidity)

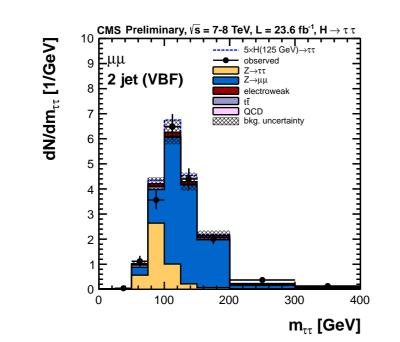
BDT Discriminators and Selection

- Boosted Decision Trees (BDTs) are exploited to further suppress the contamination from Drell-Yan processes
- Trainings are performed for all Higgs mass hypotheses (110 to 145 GeV) at once
- Trainings are performed in two categories
- 0 and 1 jet category inclusively
- VBF category separately (with additional variables)
- BDT outputs discriminate strongly against the main $Z \rightarrow \mu\mu$ background

Signal-like events are selected after cuts on the discriminators
 Cut thresholds are optimised for the significance S/(√S+B) in the selected sample


Reference: CMS-PAS-HIG-13-004

Mass Reconstruction


Reconstructed Mass of the Ditau System

- Reconstructed mass of the ditau system discriminates best between $H \rightarrow \tau \tau$ signal and the $Z \rightarrow \tau \tau$ background
- Mass hypothesis is given by a maximum likelihood method, where the likelihood function contains two

parts:

- Compatibility of the measured decay kinematics with the phase space information given by matrix element calculations
- Compatibility of the measured missing transverse energy (MET) with the predicted kinematics of the neutrinos
- Algorithm yields broad distributions for events without genuine MET, e.g. $Z \rightarrow \mu\mu$
- Example of the final mass distribution in the VBF category

Mass of the Visible Decay Products

- 2. MVA based selection of signal like events
 - → Suppress $Z \rightarrow \mu\mu$ background
- 3. Background estimationon
 - → Data-driven as far as possible
- 4. Statistical inference based on 2D Likelihoods
 - Account for two main DY backgrounds based on the visible mass and the reconstructed ditau mass

Background Estimation

$Z ightarrow \mu \mu$

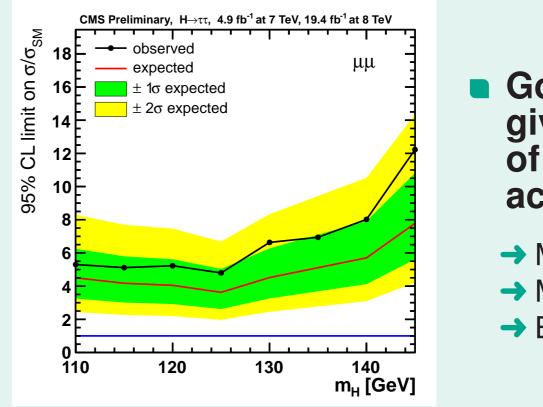
DCA Template Fits

Embedding

- Data-driven estimation by correcting the MC based on template fits of the distance of closest approach (DCA) of the two muons
 - The DCA variable is only weakly to other BDT input variables
 - Fits are performed in bins of the two mass variables and a BDT discriminator excluding the DCA variable as input variable
 - Both the shape and the normalisation are corrected to fit the data

$Z \to \tau \tau$

Shape is taken from embedded data sample

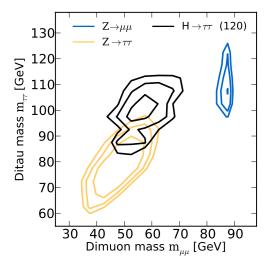

- Muons in selected $Z \rightarrow \mu\mu$ data events are replaced by simulated tau leptons
- → Underlying event and pile-up remain from data

- Optimisation in each event category separately
- The $Z \rightarrow \mu\mu$ remains the largest background after all selection steps

Conclusion

Statistical Inference Based on 2D Likelihoods

Limits on the higgs production cross section are calculated based on 2D distributions of the visible and the reconstructed ditau mass

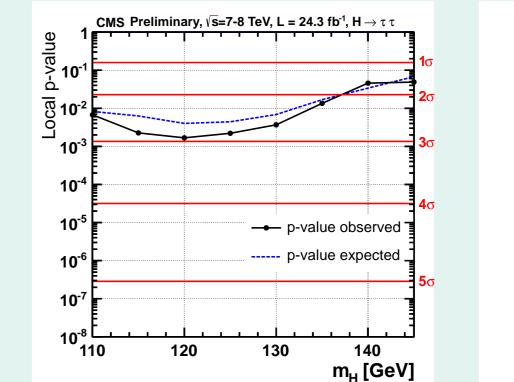

Good performance, given the challenges of this channel, is achieved

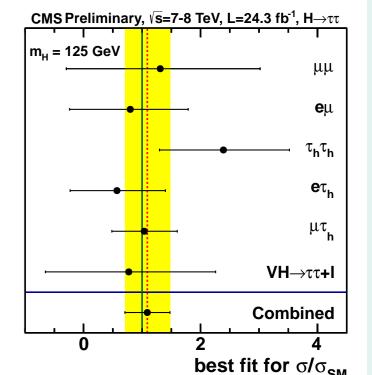
- → MVA Selection
- Mass reconstruction
- Background estimation

Results for all $H \rightarrow \tau \tau$ Channels Combined

- Neglect contributions from invisible decay products
 Underestimation of the mass for $\tau\tau$ events
- → Yields narrow mass peak for $Z \rightarrow \mu\mu$ events and therefore discriminates strongly between events with prompt leptons and $\tau\tau$ events

Combined Separation Power


• Ditau mass separates better between signal and $Z \rightarrow \tau \tau$


Dimuon mass separates better between signal and $Z \rightarrow \mu \mu$

- Normalisation is corrected by the expectation in the full simulation
- QCD Same-sign Charge Data Sample
- Shape taken from data sample where lepton pairs with same-sign charge are selected
- Normalisation extracted from data samples where the isolation criteria have been inverted

Other Backgrounds

- Shape and normalisation taken from Monte Carlo simulations
- Perfromance controlled in sideband regions

Observe excess over broad mass range

- Max. local significance: 2.94 σ at $m_H = 120 \text{ GeV}$
- Early measurements indicate compatibility with SM Higgs boson ($m_H \approx 125 \,\text{GeV}$)

KIT – University of the State of Baden-Württemberg and National Laboratory of the Helmholtz Association

Thomas Müller (KIT) on behalf of the CMS Collaboration EPS HEP 2013, Stockholm

