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The map of QCD phases
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There are many phases and transitions we can expect, but we do not al-
ways know their location, or if they actually do occur.

Models (and lattice) suggest the transition becomes 1st order at some µB .

Can we observe the critical point in heavy ion collisions, and how?
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Critical points in known liquids
Critical point ∃ in many liquids (critical opalescence).

Water:
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The transition

Deconfinement? Confinement is difficult to define for theories with quarks.

Polyakov’s definition, 〈P 〉 = 0, does not work, because 〈P 〉 6= 0.
The Z3 symmetry is out once quarks are in.

Confining string between two color sources is not infinite — it snaps:

Q−−−−−− Q̄ ⇒ Q−− q̄ + q −− Q̄

“No colored states”? This is true by definition of the theory. Not a dynamical
property. There is no deconfinement in this definition of confinement.

In the limit of massless quarks there is a well-defined Tc. But this is chiral
symmetry restoration.

Our world is not ideal: neither chiral symmetry (mq = 0) nor confinement
(mq = ∞) is well-defined. And neither is the distinction between the two
phases.
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Deconfinement transition in QCD

But there is a sense in which deconfinement does happen in QCD:
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s/T 3 – a measure of the number of (massless) particle “species”.

gluons and quarks act as (count as) unconfined (“free”) above Tc!

NB: “free” as far as d.o.f. counting (s), but not necessarily as far as hydro-
dynamics (η).

NB: even as T → ∞ interaction energies are actually large (αsT ), but the
kinetic energies are larger still (T ).
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Where exactly is the critical point?
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Location of the critical point from the Lattice
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Rough estimates based on
various assumptions.

Systematic errors are not
shown/known.
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Sign Problem

Thermodynamics is encoded in the partition function

Z =
X

quantum states

exp{−β(E − µN)} =

Z

D(paths) exp{−SE}

SE - action on a path in imaginary time τ from 0 to β.

Usually, SE - real. So
R
D(paths) e−SE - itself is a partition function for classical

statistical system in 3 + 1 dimensions. Monte Carlo methods work.

Not so for µ 6= 0.

e−SE = e−Sgluons det Dquarks.

and det Dquarks - complex for µ 6= 0.

Monte Carlo translates weight e−SE into probability and fails if SE is not real.

Recent progress based on various techniques of circumventing the problem:
Reweighting (use weight at µ = 0);
Taylor expansion;
Imaginary µ;
...
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Heavy-ion collisions and the phase diagram
STAR@RHIC
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Final state is thermal
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Location of the critical point vs freeze-out
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Location of the critical point vs freeze-out
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Location of the critical point vs freeze-out
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To do:

Experiments:

RHIC,

NA61(SHINE) @ SPS,

CBM @ FAIR/GSI

NICA @ JINR

Improve lattice predictions, under-
stand systematic errors.

Find most sensitive/optimal signa-
tures and understand the effects of
the dynamics of a h.i.c. on them.
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Critical mode and fluctuations

1

2

3 2

〈σ2

V 〉 ∼ (Ω′′)−1

µ = µCP
(Ω′′)−1 → ∞

µ > µCP

µ

T

1

3

σV

µ < µCP

e.g., σV =
∫
V σ, where σ ∼ ψ̄ψ.

Ω(σV )

large equilibrium fluctuations

Einstein, 1910:

P (σV ) ∼ number

i.e., eS, or e−Ω/T
of states with that σV

Consider a quantity (order param.) such as,

Magnitude of fluctuation and correlation length:

〈σ(x)σ(0)〉 ∼


e−|x|/ξ for |x| ≫ ξ

1/|x|1+η for |x| ≪ ξ

〈σ2
0〉 =

Z

d3
x〈σ(x)σ(0)〉 ∼ ξ2−η

critical singularity is a collective
phenomenon

σ or nB or T 00? Because they mix, only one linear combination is critical.
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Fluctuation signatures

Experiments give for each event: multiplicities Nπ,
Np, . . . , set of momenta p, etc.
These quantities fluctuate event-by-event.

Measure – sq. var., e.g., 〈(δN)2〉,〈(δpT )2〉.
What is the magnitude of these fluctuations
near the QCD C.P.? (Rajagopal-Shuryak-MS, 1998) )pN∆Net Proton (
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Universality tells us how it grows at the critical point: 〈(δN)2〉 ∼ ξ2.
Correlation length is a universal measure of the “distance” from the c.p.
It diverges as ξ ∼ (∆µ or ∆T )−2/5 as the c.p. is approached.

Magnitude of ξ is limited < O(2–3 fm) (Berdnikov-Rajagopal).

“Shape” of the fluctuations can be measured: non-Gaussian moments.
As ξ →∞ fluctuations become less Gaussian (ξ →∞ vs N →∞).

Higher cumulants show even stronger dependence on ξ
(PRL 102:032301,2009):

〈(δN)3〉 ∼ ξ4.5, 〈(δN)4〉 − 3〈(δN)2〉2 ∼ ξ7

which makes them more sensitive signatures of the critical point.
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Fluctuations of order parameter andξ

Consider probability distribution for the order-parameter field:

P [σ] ∼ exp {−Ω[σ]/T} ,

Ω =

Z

d3x

»
1

2
(∇σ)2 +

m2
σ

2
σ2 +

λ3

3
σ3 +

λ4

4
σ4 + . . .

–

. ⇒ ξ = m−1
σ

Moments (connected) of q = 0 mode σV ≡
R

d3x σ(x):

〈σ2
V 〉 = V T ξ2 ; 〈σ3

V 〉 = 2V T 2 λ3 ξ6 ;

〈σ4
V 〉c ≡ 〈σ4

V 〉 − 3〈σ2
V 〉2 = 6V T 3 [ 2(λ3ξ)

2 − λ4 ] ξ8 .

Tree graphs. Each propagator gives ξ2.

+

Scaling requires “running”: λ3 = λ̃3T (Tξ)−3/2 and λ4 = λ̃4(Tξ)−1, i.e.,

〈σ3
V 〉 = 2V T 3/2 λ̃3 ξ4.5 ; 6V T 2 [ 2(λ̃3)

2 − λ̃4 ] ξ7 .
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Experment: fluctuations of observables

Example:

δN =
X

p

δnp .

np fluctuates around n̄p(m), which also fluctuates.
Because δm = gδσ, where σ – order parameter field.

δnp = δn0
p

|{z}

statistical

+
∂n̄p

∂m
g δσ

| {z }

critical

.

〈(δN)3〉 =
X

p1,p2,p3

〈δnp1
δnp2

δnp3
〉

= (Statistical)− 〈σ3
V 〉

“ g

T

”3 v2
p1

γp1

v2
p2

γp2

v2
p3

γp3

v2
p

= fp(1 ± fp), γp = (dEp/dm)−1

〈σ3
V 〉 – a cumulant of the order parameter field – universal.

〈σ2
V 〉 = V T ξ2 ; 〈σ3

V 〉 = 2V T 3/2 λ̃3 ξ4.5 ; 〈σ4
V 〉 = 6V T 2 [ 2(λ̃3)

2 − λ̃4 ] ξ7 .
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Negative kurtosis
Not only kurtosis becomes large, but it also changes sign
(PRL 107:052301,2011)

P (σV ): → Thus 〈σ4
V 〉c < 0 on the crossover line (λ3 = 0).

And around it.

Universal Ising eq. of state M(H):
M = Rβθ, t = R(1 − θ2), H = Rβδh(θ)

here κ4 is κ4(M) ≡ 〈M4〉c
in QCD M → σV ,
and (t, H)→ (µ− µCP, T − TCP)

〈(δN)4〉c = 〈N〉+ 〈σ4
V 〉c

„
g

T

Z

p

v2
p

γp

«4

+ . . . ,

〈σ4
V 〉c < 0 means ω4(N) ≡ 〈(δN)4〉c/〈N〉 < 1
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Early data from RHIC energy scan
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A scenario
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A scenario
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Another scenario
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Conclusions/Outlook

Critical point is a special singular point on the phase diagram, with unique
signatures. This makes its experimental discovery possible.

Locating the point is still a challenge for theory.
Continued progress in lattice calculations: towards infinite volume, contin-
uum limit and even tackling the sign problem.
Inconclusive so far (lower bound µB ∼ 200 MeV).

New sensitive signatures of the critical point based on higher moments
are under study: the effects of the time evolution, conservation laws, finite
acceptance.

The search for the critical point is on. New RHIC results for 2 points with
µB > 200 MeV (

√
s = 11 and 7.7 GeV) were presented at QM11.

19 and 27 GeV at QM12?

More measurements at
√

s values below 19 GeV are needed to map QCD
phase diagram.
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