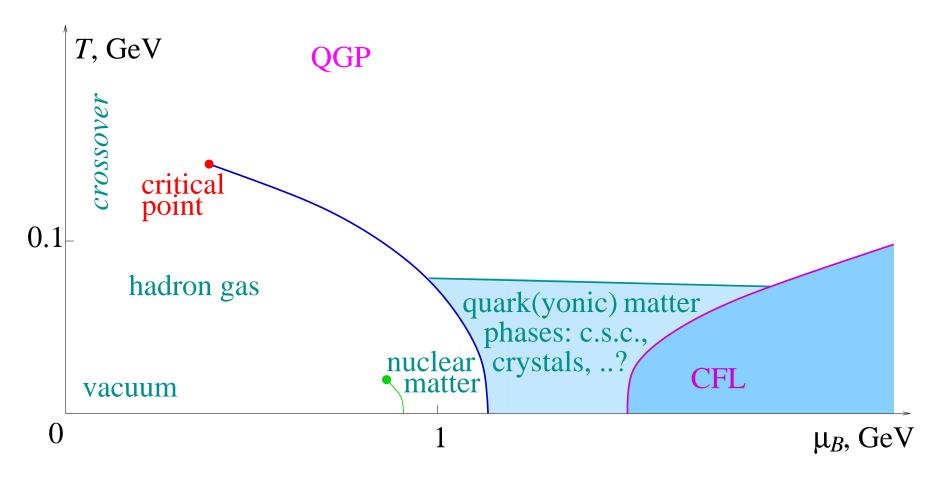
QCD phase diagram

the search for the critical point

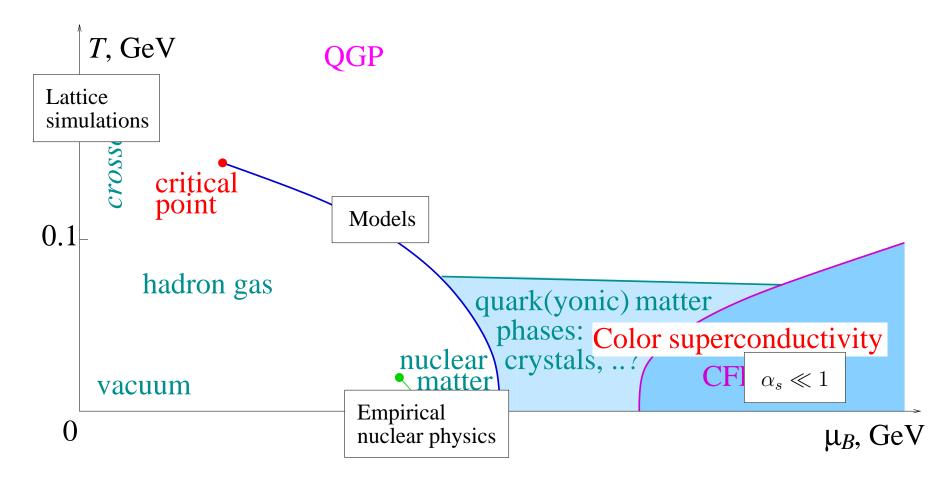
M. Stephanov U. of Illinois at Chicago

The map of QCD phases



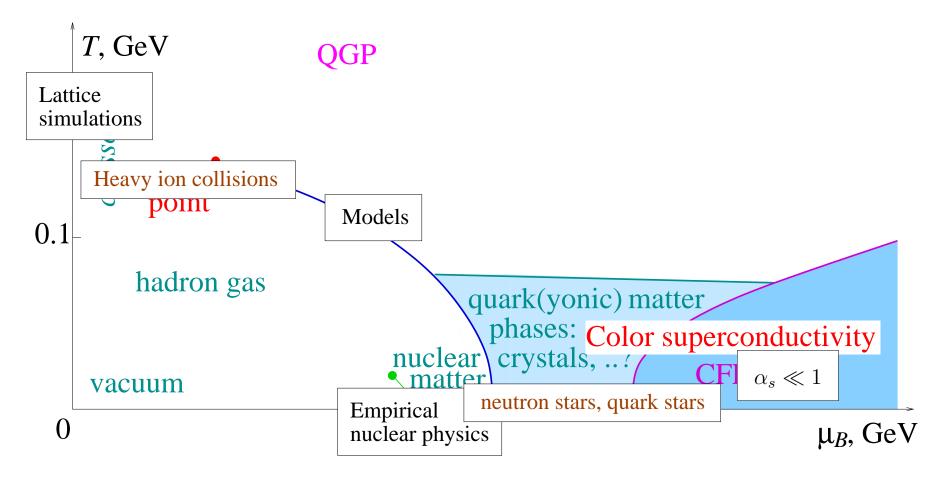
- There are many phases and transitions we can expect, but we do not always know their location, or if they actually do occur.
- Models (and lattice) suggest the transition becomes 1st order at some μ_B .
- Can we observe the critical point in heavy ion collisions, and how?

The map of QCD phases



- There are many phases and transitions we can expect, but we do not always know their location, or if they actually do occur.
- Models (and lattice) suggest the transition becomes 1st order at some μ_B .
- Can we observe the critical point in heavy ion collisions, and how?

The map of QCD phases

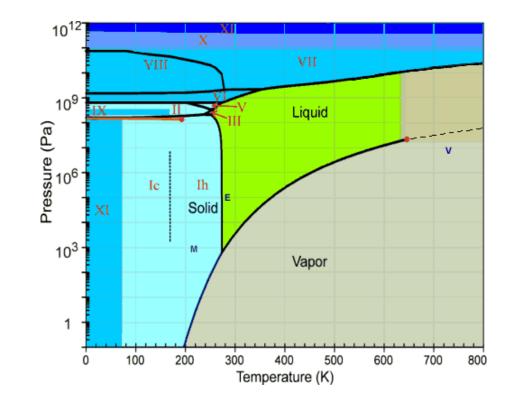


- There are many phases and transitions we can expect, but we do not always know their location, or if they actually do occur.
- Models (and lattice) suggest the transition becomes 1st order at some μ_B .
- Can we observe the critical point in heavy ion collisions, and how?

Critical points in known liquids

Critical point \exists in many liquids (critical opalescence).

Water:



The transition

Deconfinement? Confinement is difficult to define for theories with quarks.

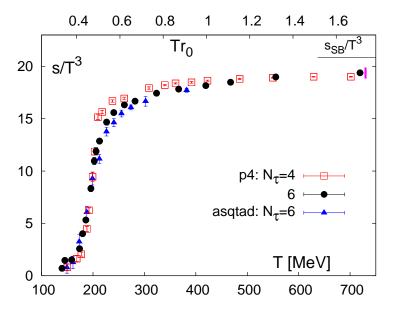
- Polyakov's definition, $\langle P \rangle = 0$, does not work, because $\langle P \rangle \neq 0$.
 The Z₃ symmetry is out once quarks are in.
- Confining string between two color sources is not infinite it snaps:

$$Q - - - - - \bar{Q} \implies Q - - \bar{q} + q - - \bar{Q}$$

- Substitution of the states of the states
- In the limit of massless quarks there is a well-defined T_c . But this is chiral symmetry restoration.
- Our world is not ideal: neither chiral symmetry ($m_q = 0$) nor confinement ($m_q = \infty$) is well-defined. And neither is the distinction between the two phases.

Deconfinement transition in QCD

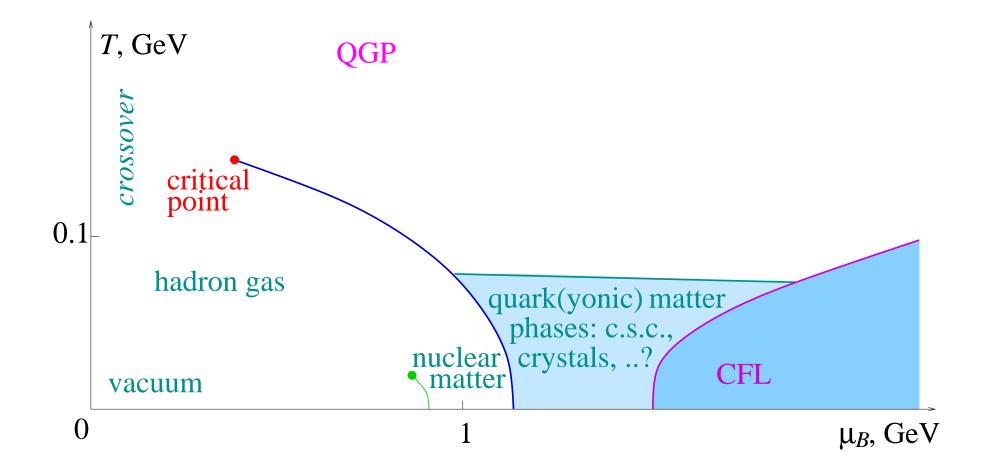
But there is a sense in which deconfinement does happen in QCD:



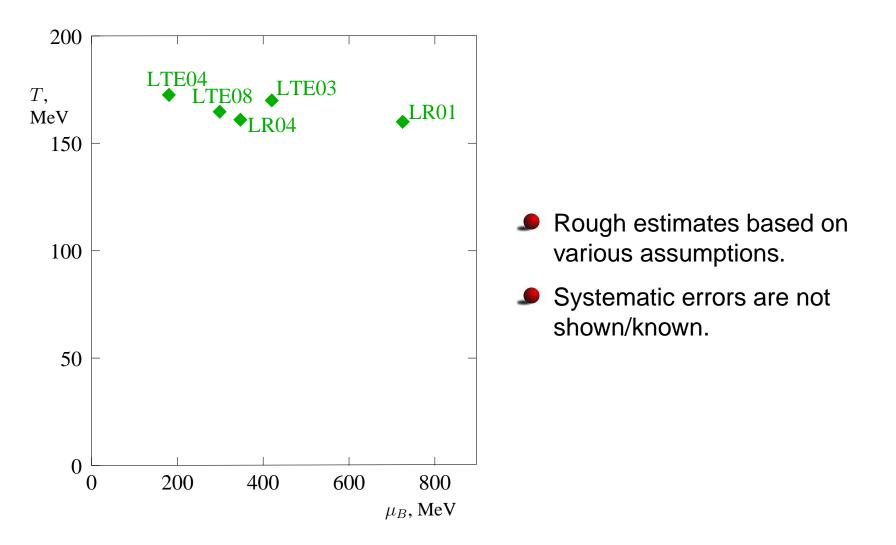
I s/T^3 – a measure of the number of (massless) particle "species".

- I gluons and quarks act as (count as) unconfined ("free") above T_c !
- Solution NB: "free" as far as d.o.f. counting (s), but not necessarily as far as hydrodynamics (η).
- Solution NB: even as $T \to \infty$ interaction energies are actually large ($\alpha_s T$), but the kinetic energies are larger still (T).

Where exactly is the critical point?



Location of the critical point from the Lattice



Sign Problem

Thermodynamics is encoded in the partition function

$$Z = \sum_{\text{quantum states}} \exp\{-\beta(\mathcal{E} - \mu N)\} = \int \mathcal{D}(\text{paths}) \, \exp\{-S_E\}$$

 S_E - action on a path in imaginary time τ from 0 to β .

● Usually, S_E - real. So $\int D(\text{paths}) e^{-S_E}$ - itself is a partition function for *classical* statistical system in 3 + 1 dimensions. Monte Carlo methods work.

. Not so for $\mu \neq 0$.

$$e^{-S_E} = e^{-S_{\text{gluons}}} \det D_{\text{quarks}}.$$

and $\det D_{\text{quarks}}$ - complex for $\mu \neq 0$.

Monte Carlo translates weight e^{-S_E} into probability and fails if S_E is not real.

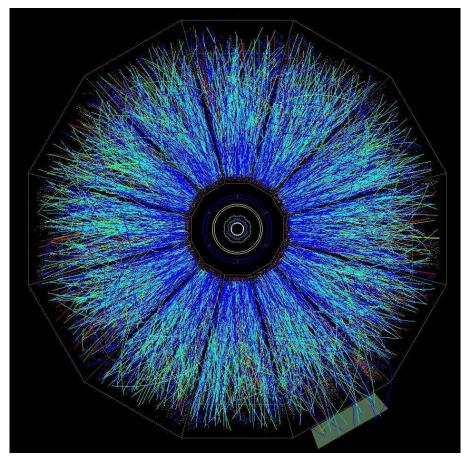
Recent progress based on various techniques of circumventing the problem:
Reweighting (use weight at $\mu = 0$);

Taylor expansion;

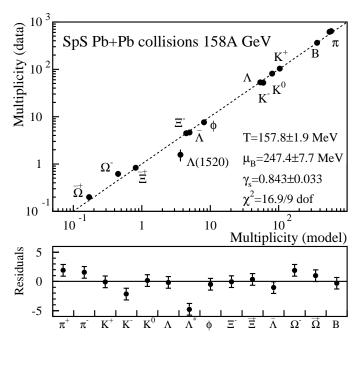
9 Imaginary
$$\mu$$
;

Heavy-ion collisions and the phase diagram

STAR@RHIC

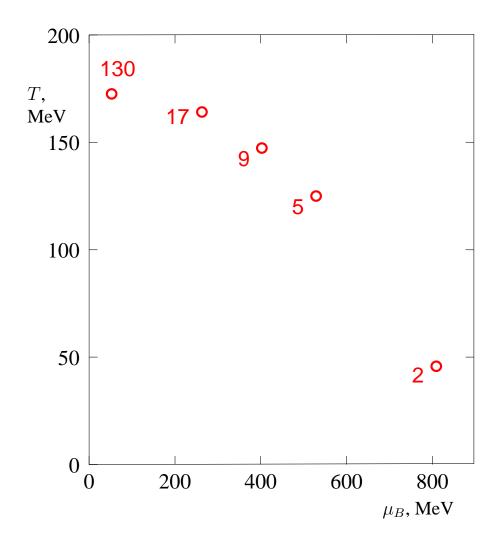


an event "Little Bang" Final state is thermal

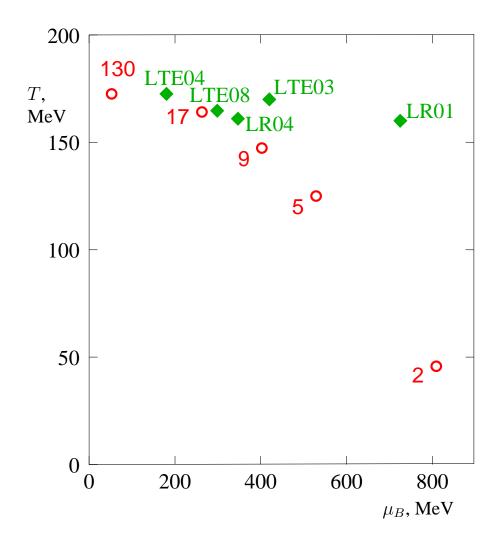


(from Becattini et al)

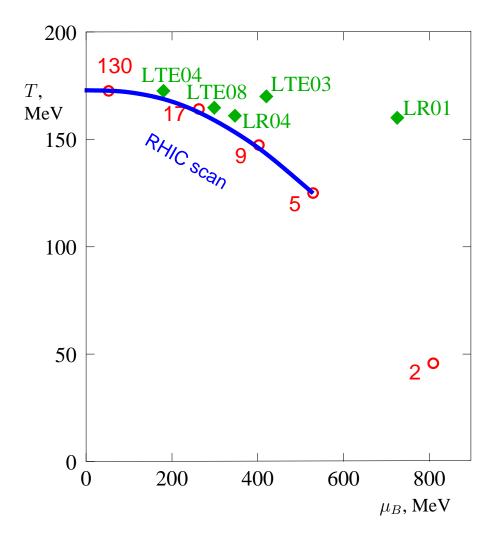
Location of the critical point vs freeze-out



Location of the critical point vs freeze-out



Location of the critical point vs freeze-out



To do:

Experiments:

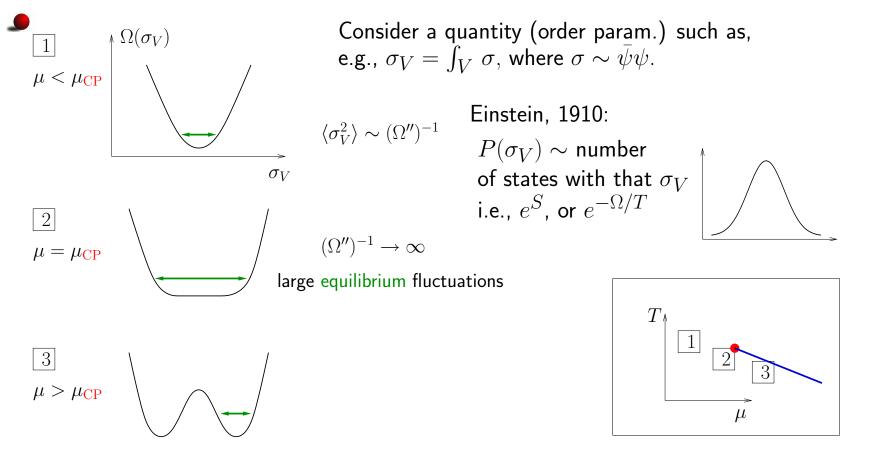
● RHIC,

- NA61(SHINE) @ SPS,
- SBM @ FAIR/GSI
- NICA @ JINR

Improve lattice predictions, understand systematic errors.

Find most sensitive/optimal signatures and understand the effects of the dynamics of a h.i.c. on them.

Critical mode and fluctuations



Magnitude of fluctuation and correlation length:

$$\langle \sigma(\boldsymbol{x})\sigma(\boldsymbol{0})
angle \sim \left\{ egin{array}{cc} e^{-|\boldsymbol{x}|/\xi} & \mbox{for} & |\boldsymbol{x}|\gg\xi \ 1/|\boldsymbol{x}|^{1+\eta} & \mbox{for} & |\boldsymbol{x}|\ll\xi \end{array}
ight.$$

$$\langle \sigma_{\mathbf{0}}^2
angle = \int d^3 x \langle \sigma(x) \sigma(\mathbf{0})
angle \sim \xi^{2-\eta}$$

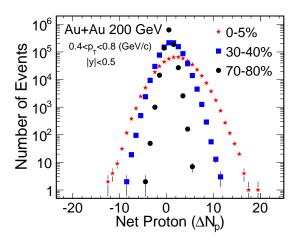
critical singularity is a *collective* phenomenon

 $\mathbf{I} \sigma$ or n_B or T^{00} ? Because they mix, only *one* linear combination is critical.

Fluctuation signatures

Experiments give for each event: multiplicities N_π, N_p, ..., set of momenta p, etc.
 These quantities fluctuate event-by-event.

- Measure sq. var., e.g., $\langle (\delta N)^2 \rangle$, $\langle (\delta p_T)^2 \rangle$.
- What is the magnitude of these fluctuations near the QCD C.P.? (Rajagopal-Shuryak-MS, 1998)



- Universality tells us how it grows at the critical point: $\langle (\delta N)^2 \rangle \sim \xi^2$. Correlation length is a universal measure of the "distance" from the c.p. It diverges as $\xi \sim (\Delta \mu \text{ or } \Delta T)^{-2/5}$ as the c.p. is approached.
- Magnitude of ξ is limited < O(2-3 fm) (Berdnikov-Rajagopal).
- Shape" of the fluctuations can be measured: non-Gaussian moments.
 As ξ → ∞ fluctuations become less Gaussian (ξ → ∞ vs N → ∞).
- Higher cumulants show even stronger dependence on \$\xi\$ (PRL 102:032301,2009):

 $\langle (\delta N)^3 \rangle \sim \xi^{4.5}, \qquad \langle (\delta N)^4 \rangle - 3 \langle (\delta N)^2 \rangle^2 \sim \xi^7$

which makes them more sensitive signatures of the critical point.

Fluctuations of order parameter and ξ

Consider probability distribution for the order-parameter field:

$$P[\sigma] \sim \exp\left\{-\Omega[\sigma]/T\right\},$$

$$\Omega = \int d^3x \left[\frac{1}{2} (\boldsymbol{\nabla}\sigma)^2 + \frac{m_\sigma^2}{2} \sigma^2 + \frac{\lambda_3}{3} \sigma^3 + \frac{\lambda_4}{4} \sigma^4 + \dots \right] . \qquad \Rightarrow \quad \xi = m_\sigma^{-1}$$

Moments (connected) of q = 0 mode $\sigma_V \equiv \int d^3x \, \sigma(x)$:

$$\langle \sigma_V^2 \rangle = VT \,\xi^2 \,; \qquad \langle \sigma_V^3 \rangle = 2VT^2 \,\lambda_3 \,\xi^6 \,; \langle \sigma_V^4 \rangle_c \equiv \langle \sigma_V^4 \rangle - 3 \langle \sigma_V^2 \rangle^2 = 6VT^3 \left[2(\lambda_3 \xi)^2 - \lambda_4 \right] \xi^8$$

J Tree graphs. Each propagator gives ξ^2 .

Scaling requires "running": $\lambda_3 = \tilde{\lambda}_3 T(T\xi)^{-3/2}$ and $\lambda_4 = \tilde{\lambda}_4 (T\xi)^{-1}$, i.e.,

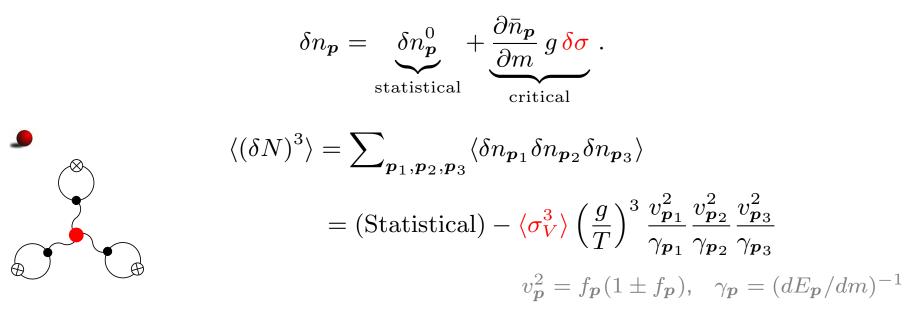
 $\langle \sigma_V^3 \rangle = 2VT^{3/2} \,\tilde{\lambda}_3 \,\boldsymbol{\xi}^{4.5} \,; \quad 6VT^2 \left[2(\tilde{\lambda}_3)^2 - \tilde{\lambda}_4 \right] \boldsymbol{\xi}^7 \,.$

Experment: fluctuations of observables

Example:

$$\delta N = \sum_{p} \delta n_{p}.$$

Inp fluctuates around $\bar{n}_p(m)$, which also fluctuates.
Because $\delta m = g\delta\sigma$, where σ – order parameter field.



 $\langle \sigma_V^3 \rangle$ – a cumulant of the order parameter field – *universal*.

$$\langle \sigma_V^2 \rangle = VT \,\boldsymbol{\xi}^2 \,; \quad \langle \sigma_V^3 \rangle = 2VT^{3/2} \,\tilde{\lambda}_3 \,\boldsymbol{\xi}^{4.5} \,; \quad \langle \sigma_V^4 \rangle = 6VT^2 \left[\,2(\tilde{\lambda}_3)^2 - \tilde{\lambda}_4 \,\right] \boldsymbol{\xi}^7 \,.$$

Negative kurtosis

Not only kurtosis becomes large, but it also changes sign (PRL 107:052301,2011)

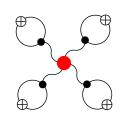
 $\begin{array}{c} 0.4 \\ 0.2 \\ 0.0 \\ -0.2 \\ -0.4 \\ -0.4 \\ -0.2 \\ 0.0 \\ 0.0 \\ -0.4 \\ -0.2 \\ 0.0 \\ 0.0 \\ 0.2 \\ 0.0 \\ 0.2 \\ 0.0 \\ 0.2 \\ 0.4 \\ H \end{array}$

Thus
$$\langle \sigma_V^4 \rangle_c < 0$$
 on the crossover line ($\lambda_3 = 0$).
And around it.

Universal Ising eq. of state M(H): M = R^βθ, t = R(1 - θ²), H = R^{βδ}h(θ)
here κ₄ is κ₄(M) ≡ ⟨M⁴⟩_c

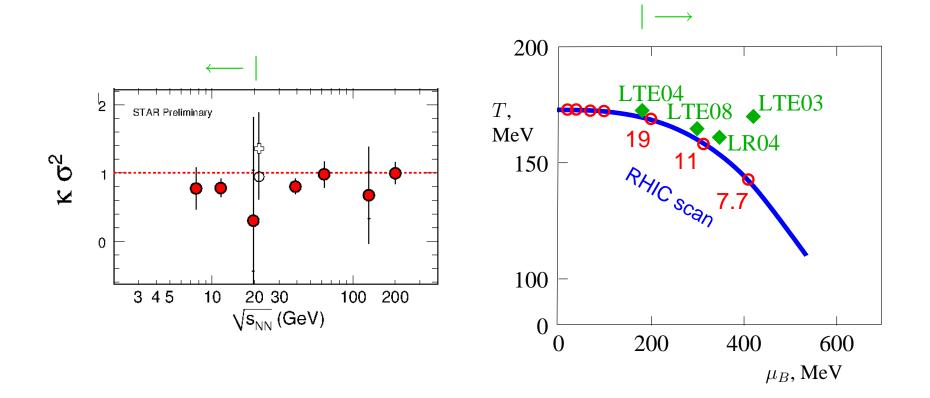
■ in QCD
$$M \to \sigma_V$$
,
and $(t, H) \to (\mu - \mu_{\rm CP}, T - T_{\rm CP})$

$$\langle (\delta N)^4 \rangle_c = \langle N \rangle + \langle \sigma_V^4 \rangle_c \left(\frac{g}{T} \int_p \frac{v_p^2}{\gamma_p} \right)^4 + \dots,$$

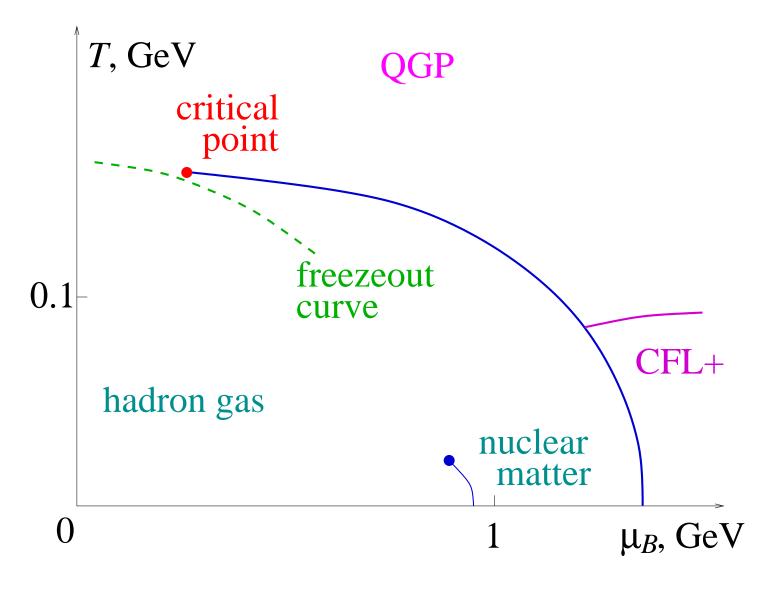


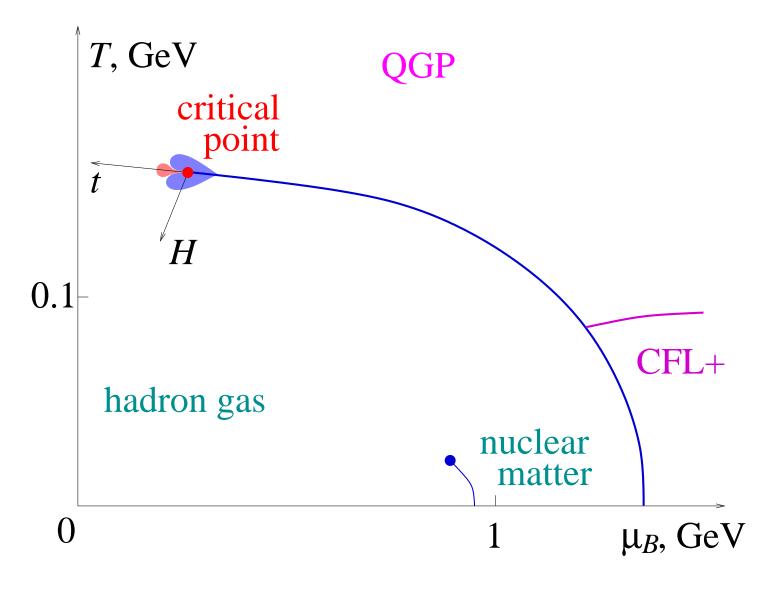
 $\langle \sigma_V^4 \rangle_c < 0 \text{ means} \quad \omega_4(N) \equiv \langle (\delta N)^4 \rangle_c / \langle N \rangle < 1$

Early data from RHIC energy scan

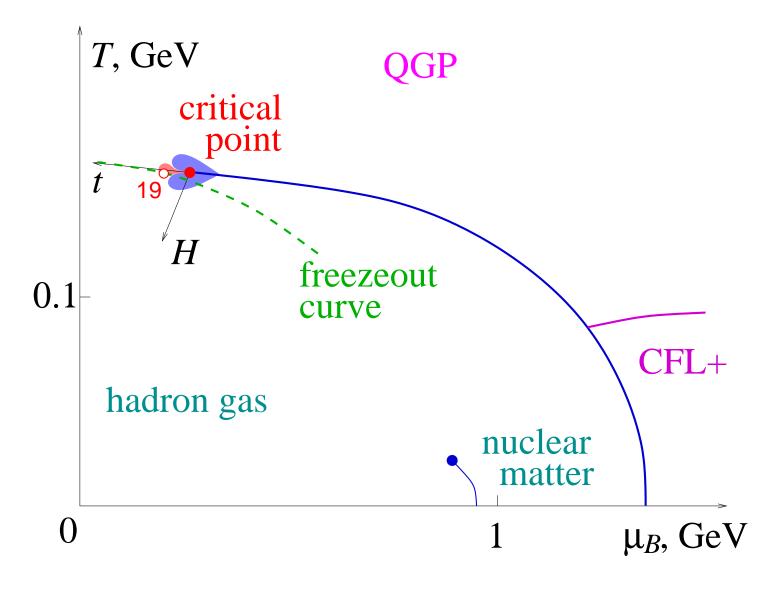


. 3 points at $\mu_B > 200$ MeV.

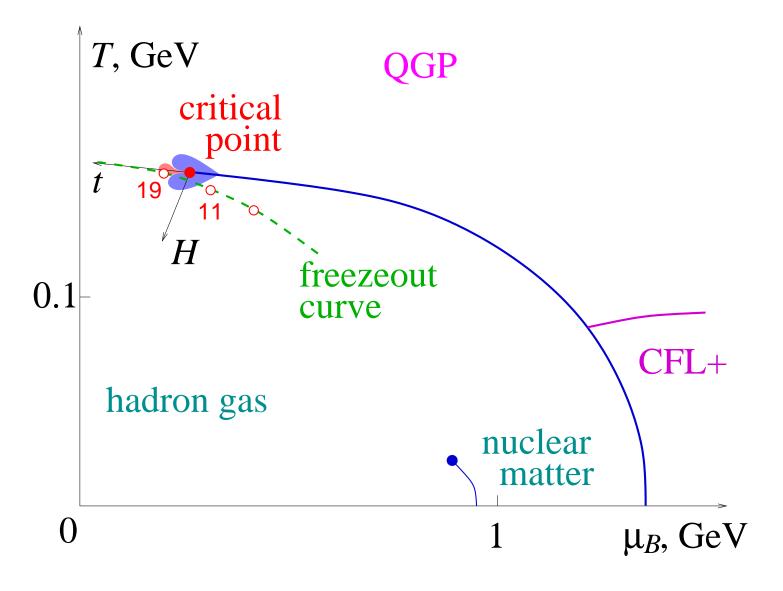




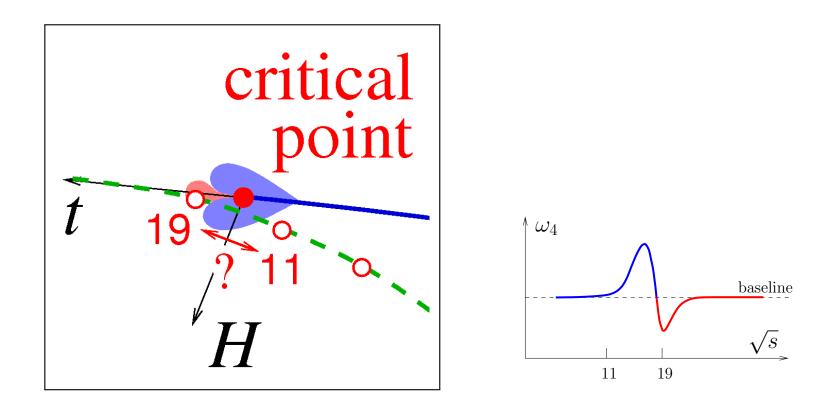
Critical region $\Delta \mu_B \sim \mathcal{O}(100 - 150)$ MeV.



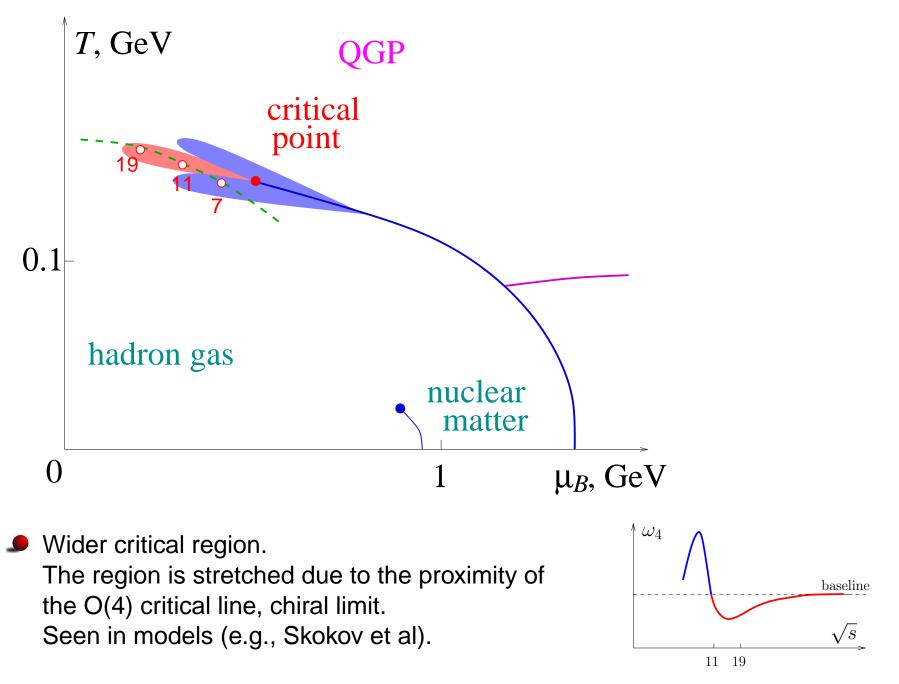
Critical region $\Delta \mu_B \sim \mathcal{O}(100 - 150)$ MeV.



Critical region $\Delta \mu_B \sim \mathcal{O}(100 - 150)$ MeV.



Another scenario



Conclusions/Outlook

- Critical point is a special singular point on the phase diagram, with unique signatures. This makes its experimental discovery possible.
- Locating the point is still a challenge for theory. Continued progress in lattice calculations: towards infinite volume, continuum limit and even tackling the sign problem. Inconclusive so far (lower bound $\mu_B \sim 200$ MeV).
- New sensitive signatures of the critical point based on higher moments are under study: the effects of the time evolution, conservation laws, finite acceptance.
- The search for the critical point is on. New RHIC results for 2 points with $\mu_B > 200 \text{ MeV}$ ($\sqrt{s} = 11 \text{ and } 7.7 \text{ GeV}$) were presented at QM11.

19 and 27 GeV at QM12?

More measurements at \sqrt{s} values below 19 GeV are needed to map QCD phase diagram.