
OpenCL:
Portable
programming at
the right or the
wrong level?

Yngve Sneen Lindal
European Organization for Nuclear Research (CERN), Geneva, Switzerland

Second International Workshop for Future Challenges in Tracking and Trigger

Concepts,

CERN

July 7th−8th, 2011

OpenCL

 Standard for heterogeneous computing, set by the

Khronos Group

..and many more

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

OpenCL

 Idea: implicit data-parallel code executed in

«kernels», portable across different devices/vendors

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

OpenCL

 A kernel represents a parallel execution on a grid of

threads

(Illustration borrowed from NVIDIAs OpenCL programming guide)

http://www.nvidia.com/content/cudazone/download/OpenCL/NVIDIA_OpenCL_ProgrammingGuide.pdf

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

http://www.nvidia.com/content/cudazone/download/OpenCL/NVIDIA_OpenCL_ProgrammingGuide.pdf

OpenCL

 Goal: To use this both for CPUs and GPUs with the same kernel code, and

that this is performant

 Paradigm suitable for GPU execution

 CPUs and GPUs differ largely in hardware implementation

 Strictly C (or a superset of), no C++ here

 Cannot call «host code» from OpenCL code, and vice versa

 A lot of compute intensive programs are written in C++

 Will this work (and be performant) on CPUs as well?

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

OpenCL

 OpenCL device abstractions

 Different hardware/SDKs/drivers are represented by

different «platform» objects

 A platform object can have a range of devices (you must

have them physically, of course)

 An example
cl_platform platform;

cl_device device;

cl_context context;

cl_command_queue queue;

cl_int status;

clGetPlatformIDs(1, &platform, NULL);

clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, &device, NULL);

context = clCreateContext(NULL, 1, &device, NULL, NULL, &status);

queue = clCreateCommandQueue(context, device, 0, &status);

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

Kernel declaration/execution

 The Gaussian kernel, revisited
__kernel void evaluatePdfGaussian(__const double mu, __const double sigma, __global const double *data,

__global double *results, __const int N)

{

int i = get_global_id(0);

if (i >= N) return;

double x = data[i];

double temp = (x-mu)/sigma;

temp *= temp;

results[i] = exp(-0.5*temp);

}

 Executing a computational kernel
//Assume we have the required arguments and a kernel object for the Gaussian kernel above

clSetKernelArg(evaluatePdfGaussian, 0, sizeof(float), (void*)&mu);

clSetKernelArg(evaluatePdfGaussian, 1, sizeof(float), (void*)&sigma);

clSetKernelArg(evaluatePdfGaussian, 2, sizeof(cl_mem), (void*)&data);

clSetKernelArg(evaluatePdfGaussian, 3, sizeof(cl_mem), (void*)&results);

clSetKernelArg(evaluatePdfGaussian, 4, sizeof(int), (void*)&N);

size_t workGroupSize = 128; //e.g.

size_t numWorkGroups = N % workGroupSize == 0 ? N/workGroupSize : N/workGroupSize + 1;

size_t total = workGroupSize * numWorkGroups;

clEnqueueNDRangeKernel(queue, evaluatePdfGaussian, 1, NULL, &total, &workGroupSize, 0, NULL, NULL);

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

An implementation example (RooFit)

 With OpenMP, each thread can evaluate a tree of PDFs top-down directly

in fully parallel. Using OpenCL requires an explicit call to a kernel inside

each PDF (see 2nd illustration), suggesting lower parallel efficiency.

 Leads to larger serial fraction, many kernel calls and in general, stalls

 Remember, no C++ in OpenCL kernels

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

Experiences

 Introduces more expressive code when setting up environment and e.g.

calling kernels.

 Using plain C++ for CPU and OpenCL for GPU, we get duplication of code

since we now must use an OpenCL compiler in addition to the C/C++

compiler

 Neither Intel or AMDs x86 implementation (Linux) offers auto-

vectorization per 01.07.2011

 Have to use vector types to achieve vectorization. But even then AMDs

OpenCL compiler (for CPU) does not vectorize transcendentals for

instance

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

Manual vectorization

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

Experiences cont.

 Hidden threading overhead. Necessary to do more work per OpenCL

thread for performance (goes for both Intel and AMD)

 Have talked to Intel OpenCL expert. He says that Intel will support auto-

vectorization in OpenCL

 It would of course be nice to have one piece of code for any device, but

that seems like somewhat of a silver bullet so far…

 AMD APP SDK uses LLVM as backend for CPUs

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

Manual work partitioning

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

Some CPU results

 Benchmark on a desktop system

 CPU: Intel Sandy Bridge @ 3.40GHz: 4 cores – 8 potential

hardware threads

 Linux 64bit, Intel C++ compiler version 12.1

13Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

VS

On GPUs

 Potential portability problem between NVIDIA and AMD/ATI; VLIW

registers

 More difficult for AMD to exploit parallelism

 AMD Radeon series has 4 general stream cores and 1 special functional

unit per scalar processor. We cannot use the functional unit (Geforce also

has special functional units)

 We use transcendentals and double precision. Peak performance? Dream

on...

 So, portability issue will in general arise only if doing simple math and not

being memory-bound (typically, linear algebra)

 Of course, optimal work group size will differ between different models

 In our case, we are in general memory (latency) bound, so we don’t

experience any difference

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

Conclusion

 Reflect carefully before introducing OpenCL in your code

 Not ideal for CPU computations until code can be written the same way on

the CPU as on the GPU and be performant. In essence this means:

 Automatic vectorization for CPUs (both Intel and AMD supports SSE…)

 Implicit effective thread-scheduling for most workloads

 No point in mixing OpenCL for CPUs and GPUs today, from a programmer’s

perspective (me). Atleast if you can play around with the Intel compiler

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

Conclusion

 OpenCL can be painful in legacy C++ programs. NVIDIA CUDA supports

C++, but then we’re bound to one specific vendor

 The main positive effect is code reuse between CPU and GPU

 Yes, it is portable, but it is not fully performance portable (there’s a bunch

of papers that states exactly this, also across GPU vendors)

 We are now focusing on hybrid (balancing) solutions with OpenMP and

OpenCL, and they can co-exist fairly well

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

