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SUSY - Flavor Interplay

mSUSY — Flavor: if superpartner masses are flavor dependent: new handles on the underlying flavor theory.
m Flavor = SUSY: if superpartner masses are flavor dependent: need to reassess search techniques.

mNatural SUSY models exist with flavor dependent superpartner masses, consistent with all low-energy bounds on flavor changing processes.
Examples: gauge-gravity hybrid models (Feng Lester Nir Shadmi), GMSB models with matter-messenger couplings (Shadmi Szabo)

mIf fermion masses are explained by some underlying flavor theory (e.g., Froggatt Nielsen symmetry) — this flavor theory also controls the non-universal contributions to
scalar masses — slepton masses would give additional handles on flavor charges.

SUSY Lepton Flavor Violating (LFV) Models - Phenomenology Flavor Blind Case (usually assumed) Flavor Violating Case

Focusing on SUSY LFV models: [1, [2 degenerate =—> endpoints mlq, I5 non-degenerate —> different
m Slepton masses (especially the first 2 generations) are not necessarily degenerate. coincide. endpoints with splitting Amy;.
m Slepton-Gaugino-Lepton interactions can be generation dependent: N
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Two types of questions then arise Figure: Predicted signal distributions for the Figure: Predicted signal distributions for the
flavor blind case. flavor violating case (Amy = 4GeV,
i Are existing methods for measuring the SUSY spectrum still efficient ? If not, can R = 0.9, sin” 0 = 0.7).

new techniques be developed ? No signal in ep distribution.
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Binning affects the edge structure.
allowing for the cascade decay chain: Results(Preliminary) - A Case With Small Mixing
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Measuring The SUSY Spectrum - The Kinematic Edge Technique
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| X} is undetected = Edge Structure in distributions of kinematic observables.

A | he opposite-sign-dilepton EndPoint is the best studied case of a kinematic edge:
Figure: Simulation results for a model with small mixing (sin 8 ~ 0.95) and Amy ~ 6GeV

Events
Main Conclusions:

(m20_m;2> (ng_mfzg) m Different EndPoints can be resolved:

EndPoint  Truth [GeV] Fit Result [GeV]
[, EndPoint  75.86  76.137 & 0.242
I, EndPoint.  81.87  81.881 4 0.268

m e distribution contains signal = " Flavor Subtracion” fails.

m Small mixing => one endpoint dominates each distribution => better endpoint
resolution.
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B Given sufficient measurements of Edge Structure; = f; () the spectrum can
in principle be calculated.




