Signals of 4th Generation Quarks @ the LHC; a 2HDM Framework

M.Geller

(co-authors/supervisors: S.Bar-Shalom and G. Eilam)

Technion-Israel Institute of Technology

Heavy fourth generation of fermions is a simple extension of the SM, that has non-trivial far reaching implications:

- Heavy right hand neutrinos- might be a dark matter candidate (requires further "construction").
- CP violation- additional phases in CKM matrix
 →explaining puzzles in B decays, and a chance to
 account for nucleosynthesis.
- 3. Underlying framework for **TeV scale compositeness** 4th gen. bound states.

The Model - Intro

Motivation for considering 4th generation within a specific 2hdm framework (4G2HDM):

- Naturally accommodate the new heavy fermionic states.
- A possible low-energy effective realization of Dynamical EWSB- driven by the fourth generation condensates.

Details- New Particles

Fourth Generation

Quarks:

- t', b' excluded up to ~300 GeV.
- \mathbf{r}' · \mathbf{v}' heavier than about 100 GeV.

4G2HDM

2 higgs doublets:

- • couples to the 4th generation doublet.
- o couples to the rest.

The higgs potential is the usual 2hdm one with:

$$\tan \beta \triangleq \frac{v_h}{v_t} \geq 1$$

Higgs Scalars

- 3 neutral scalars- h,H (CP even) and A (CP odd).
 FCNC couplings: htt'.hbb'.
- Charged scalar H[±]
 - Charged current (H±tb, H±t'b, H±t'b', H±tb').

Decay Channels

t'(b') decay channels

- 1. t'→ht (b'→hb).
- 2. $t' \rightarrow H^+b$ (b' $\rightarrow H^-t$).
- 3. $t' \rightarrow Wb$ (b' $\rightarrow Wt$) and $t' \rightarrow Wb'$ (b' $\rightarrow Wt'$) (SM4- like).

h decay channels (light h with 100 GeV<m_b<250 GeV)

- 1. h→bb.
- h→WW,ZZ: Can be suppressed with respect to SM4.
- h→gg, h→ m by loop processes: can be either enhanced or suppressed in our 4G2HDM (Not considered in the present work).

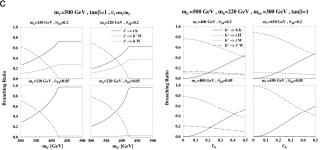


Fig. 1: Branching ratio of t' (left) and b' (right) for different choices of parameters $(\vartheta_{34}\text{=-}V_{t'}\text{=-}V_{t'}\text{=-}V_{t'})$

New Search Strategies (Work in

Progress)

In this work we present new search strategies for t', assuming two different decay patterns:

- 1. t'→ht, h→bb: 6b+W(leptonic)+W(hadronic) signature;
- 2. t'→ht, h→WW: 2b+5W(hadronic)+W(leptonic) signature; We use the following series of cuts:
- 1. $H_{T} > 400 \text{GeV}$.
- 2. Number of jets>6(11) for the first (second) signature.
- 3. Number of b-jets>4(1) for the first (second) signature.

Relevance to Current Searches

t' sianals

The dominant t' channel is $pp \rightarrow t't' \rightarrow 2W+6b \ (t'\rightarrow ht\rightarrow tbb)$ or $pp \rightarrow t't' \rightarrow 6W+2b \ \underline{(t'\rightarrow ht\rightarrow tWW)}$.

The search strategies for the SM4 single lepton signature (1Lepton+jets+missing ET) from $pp \rightarrow t't' \rightarrow 2W+2b$ (t' $\rightarrow Wb$) **FAILS**.

b' signals

If b'→hb and h→bb, we get a 6b signature, without any leptons and with enormous multijet background-impossible to discover.

Full Simulation Results

We use MadGraph+Pythia+PGS for the generation of the background and signal (t't'~) events for 7 TeV @ the LHC. We use BRIDGE for the subsequent decays of the new particles. We generate tt+jets and W+jets background. We use K-factors of 1.5 for the signal and the top pair production, and 1 for W+jets.

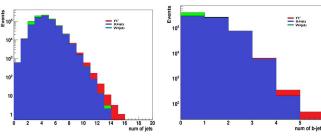


Fig. 2: Number of jets in the signal and background events for the 6W+2b signature (left), number of b-jets in signal and background events for the 2W+6b signature (right). In both cases one W decays to leptons and the others decay to quarks.

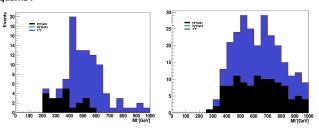


Fig. 3: Reconstructed t' mass for the 6b+2W signature (left) and 6W+2b signature (right) after the cuts (M_t =450GeV). In both cases one W decays to leptons and the others decay to quarks .

Conclusions:

- The phenomenology of 4th generation fermions embedded in the new 4G2HDM setup can be drastically altered with respect to the simpler SM4 framework.
- For the new decay patterns of t', we find higher jet
 multiplicity and a higher number of b-jets compared to SM
 background.
- In 2 different cases it is possible to discover t' @ 7 TeV LHC, using cuts based on the hardness, high jet multiplicity and a high number of b-jets in the signal.

Future Work:

- 1. Perform the same analysis for other channels, including the loop processes.
- Perform the same analysis for b' and the new leptons.