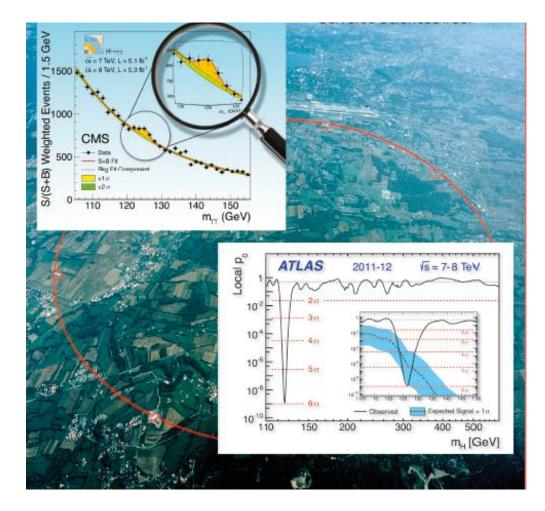
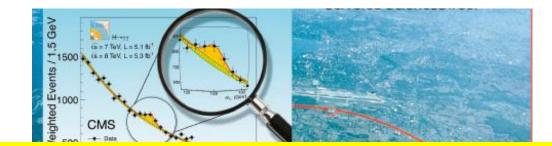
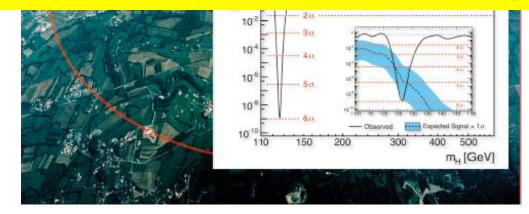
Naturalness after LHC8

G.F. Giudice



HEP 2013 Stockholm 18-24 July 2013


(info@eps-hep2013.eu)


Main goal of LHC: clarify mechanism of EW

Main goal of LHC: clarify mechanism of EW

Naturalness?

Naturalness?

UV sensitivity of m_h in SM as an effective theory

$$\delta m_h^2 = \frac{3G_F}{4\sqrt{2}\pi^2} \left(4m_t^2 - 2m_W^2 - m_Z^2 - m_h^2 \right) \Lambda^2 < m_h^2 \Longrightarrow \Lambda < 500 \text{ GeV}$$

Naturalness?

UV sensitivity of m_h in SM as an effective theory

$$\delta m_h^2 = \frac{3G_F}{4\sqrt{2}\pi^2} \Big(4m_t^2 - 2m_W^2 - m_Z^2 - m_h^2 \Big) \Lambda^2 < m_h^2 \Longrightarrow \Lambda < 500 \text{ GeV}$$

Where is new physics? Naturalness under attack!

Is the effective-field theory approach misleading ?

Is the effective-field theory approach misleading ?

GUT
$$V = m_H^2 |H|^2 + \lambda |H|^4 + M^2 |\Phi|^2 + \lambda_{\Phi} |H|^2 |\Phi|^2$$
$$\delta m_H^2 \approx \frac{\lambda_{\Phi}}{16\pi^2} M^2 \ln \frac{M^2}{\Lambda^2} + \dots$$

Is the effective-field theory approach misleading ?

GUT
$$V = m_H^2 |H|^2 + \lambda |H|^4 + M^2 |\Phi|^2 + \lambda_{\Phi} |H|^2 |\Phi|^2$$
$$\delta m_H^2 \approx \frac{\lambda_{\Phi}}{16\pi^2} M^2 \ln \frac{M^2}{\Lambda^2} + \dots$$

High-scale SUSY

$$V = m_H^2 \left| H \right|^2 + \lambda \left| H \right|^4 + V_{SUSY}$$
$$\delta m_H^2 \approx \frac{3y_t^2}{16\pi^2} \tilde{m}_t^2 \ln \frac{\tilde{m}_t^2}{\Lambda^2}$$

• Large (gauge-invariant) mass scales feed into m_H

• Large (gauge-invariant) mass scales feed into m_H

- m_H receives additive renormalization ($m_H \rightarrow 0$ doesn't enhance symmetry; 't Hooft docet)
- Conformal symmetry does not help

• Large (gauge-invariant) mass scales feed into m_H

- m_H receives additive renormalization ($m_H \rightarrow 0$ doesn't enhance symmetry; 't Hooft docet)
- Conformal symmetry does not help
- The problem is insensitive to the regularization procedure

Is naturalness a good guiding principle ?

Is naturalness a good guiding principle ?

• It is not a consistency condition, but the consequence of a reasonable criterion

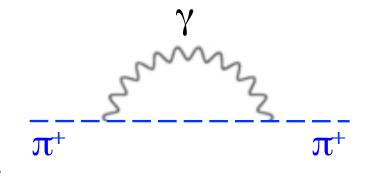
Is naturalness a good guiding principle ?

- It is not a consistency condition, but the consequence of a reasonable criterion
- Lack of conspiracy between phenomena at different scales

Is naturalness a good guiding principle ?

- It is not a consistency condition, but the consequence of a reasonable criterion
- Lack of conspiracy between phenomena at different scales

• Scale separation is not a necessity, but it has been a cornerstone for progress in physics Naturalness at work: 1. classical electron self-energy

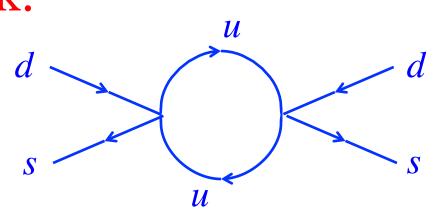


electrostatic energy:
$$E \approx \frac{\alpha}{r} < m_e c^2 \Rightarrow \Lambda < \frac{m_e}{\alpha} \approx 70 \text{ MeV}$$

magnetic energy: $E \approx \frac{\mu^2}{r^3}, \mu = \frac{e\hbar}{2m_e c} < m_e c^2 \Rightarrow \Lambda < \frac{m_e}{\alpha^{1/3}} \approx 3 \text{ MeV}$

(spinning sphere)

New physics (positron) at $m_e < \Lambda$


Naturalness at work: 2. QED contribution to pion mass difference

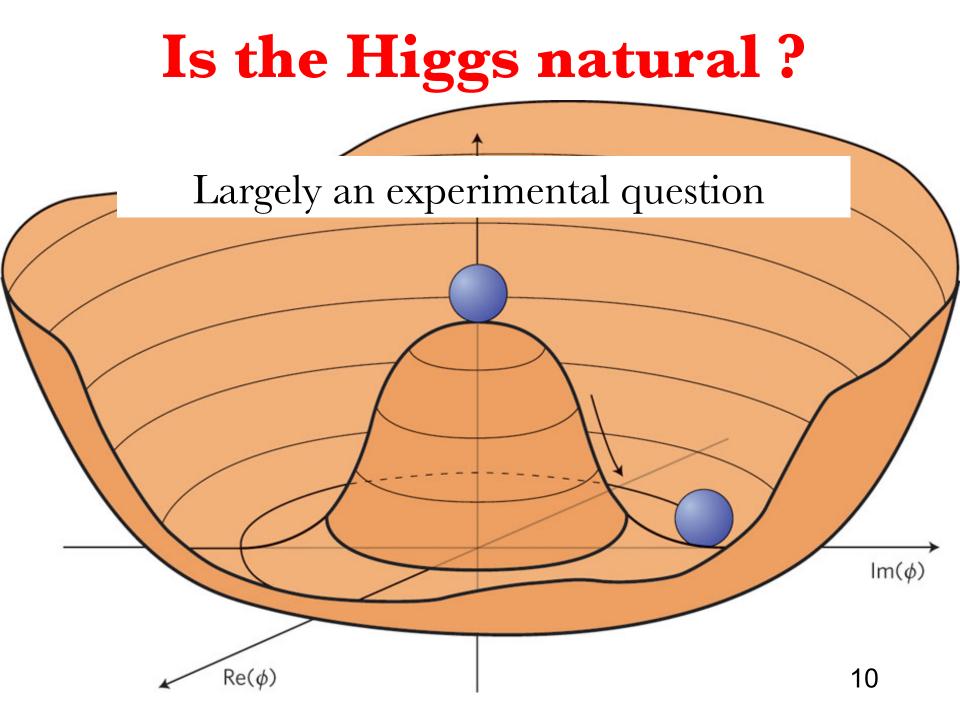
$$\frac{3\alpha}{4\pi}\Lambda^2 < M_{\pi^+}^2 - M_{\pi^0}^2 \implies \Lambda < 850 \text{ MeV}$$

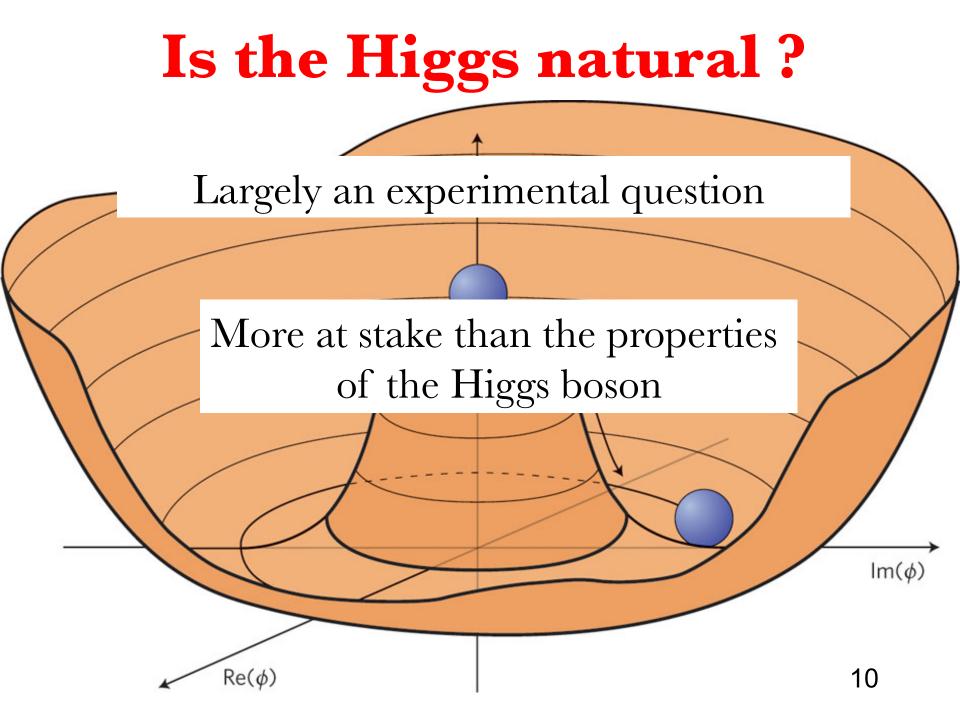
New physics (hadrons) at $M_{\rho} < \Lambda (M_{\rho} = 770 \text{ MeV})$

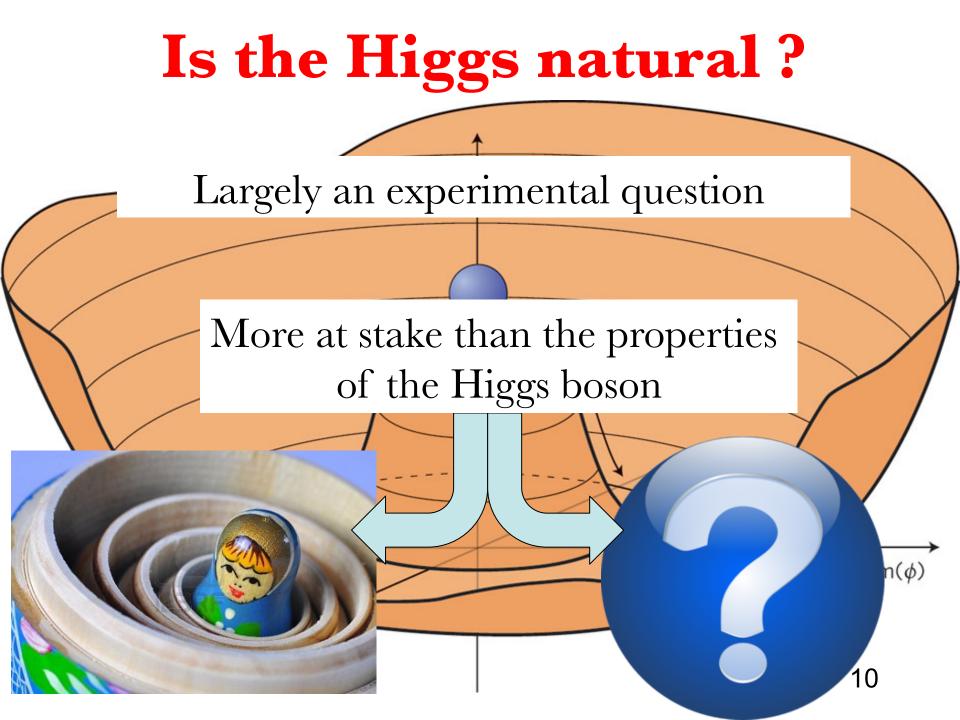
Naturalness at work: 3. Neutral kaon d mass difference

Effective theory at M_K :

$$\frac{G_F^2 f_K^2}{6\pi^2} \sin^2 \theta_c \Lambda^2 < \frac{M_{K_L^0} - M_{K_S^0}}{M_{K_L^0}} \Rightarrow \Lambda < 2 \text{ GeV}$$


New physics (charm) at $m_c < \Lambda (m_c = 1.2 \text{ GeV})$


Dark energy: a counterexample a


$\Lambda_{CC} = 2.4 \times 10^{-3} \text{ eV}$

Where is new physics

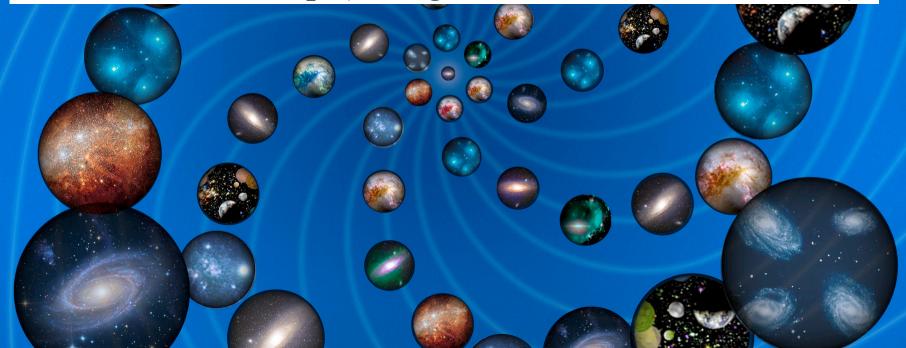
Is the Higgs natural? V (φ) $Im(\phi)$ $Re(\phi)$ 10

Unnaturalness!

Why unnaturalness?

Unnaturalness!

Why unnaturalness?



Unnaturalness !

Why unnaturalness?

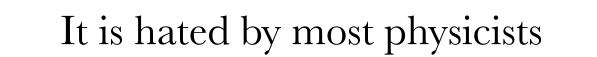
Theoretical setup (string vacua, eternal inflation)

Unnaturalness !

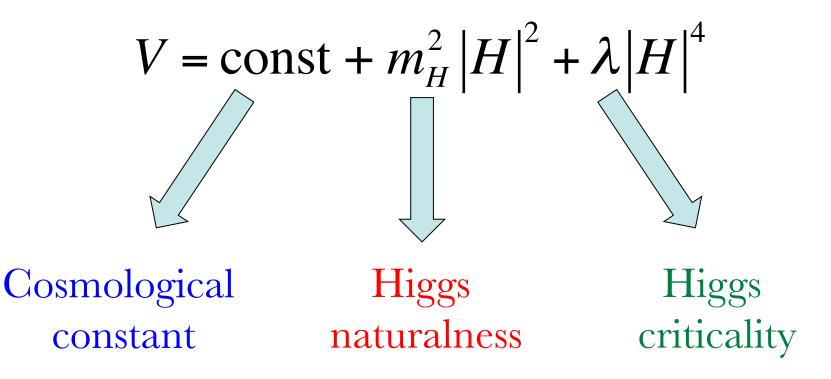
Why unnaturalness?

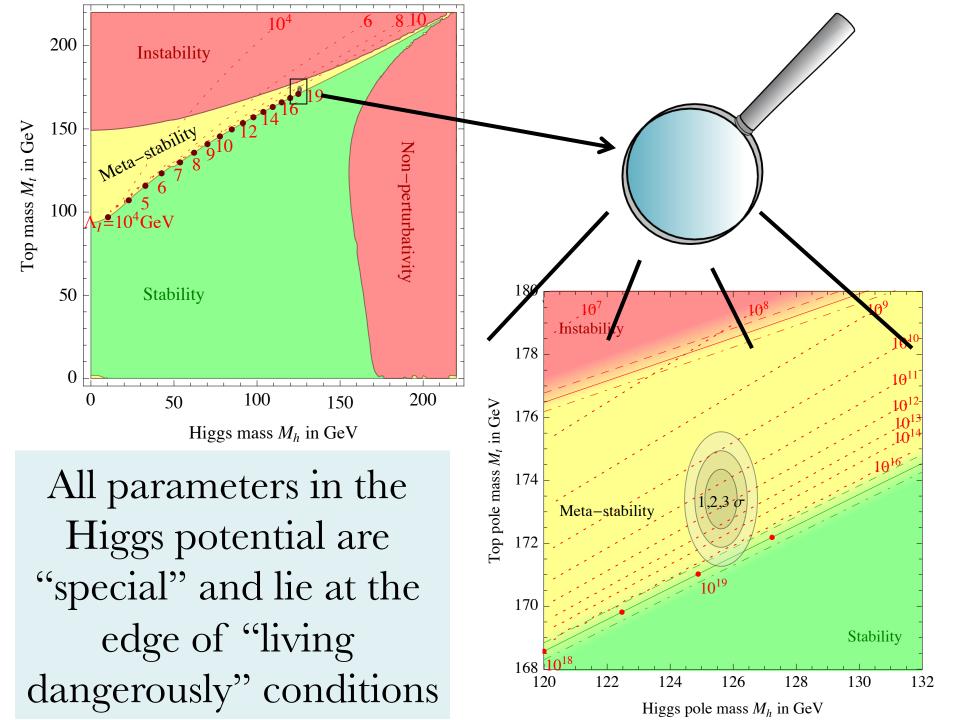
Theoretical setup (string vacua, eternal inflation)

Anthropic explanation for both m_H and Λ_{CC}


Unnaturalness !

Why unnaturalness?


Theoretical setup (string vacua, eternal inflation)


Anthropic explanation for both m_H and Λ_{CC}

How can we test it experimentally?

How can we test it experimentally?

Unnaturalness does not mean that there is nothing to discover

Unnaturalness does not mean that there is nothing to discover

Other open questions in particle physics

- Origin of flavour symmetry breaking
- Dark matter
- Strong CP problem
- Baryogenesis
- Inflation
- Unification of forces
- Dark energy
- Charge quantization

The solution of some of these problem may lie at the TeV scale

An interesting example: Anomaly mediation + Split Susy

Not technically natural, but $M_{\tilde{g}}$

• Elegant theoretical structure

anomaly mediation

- Gauge unification
- Dark matter
- Well compatible with $m_h = 126 \text{ GeV}$
- OK with flavour
- Chance of discovery at LHC14

UV naturalness

Particle threshold (mass M) $\Rightarrow m_H^2 = \frac{\alpha}{4\pi} M^2 \Rightarrow$ naturalness problem

UV naturalness

Particle threshold (mass M) $\Rightarrow m_H^2 = \frac{\alpha}{4\pi} M^2 \Rightarrow$ naturalness problem

Does gravity introduce a naturalness problem? Is G_N just a coupling or is it a dynamical threshold? Could gravity cure itself in the UV?

Not been proven, but the opposite hasn't been proven either...

UV naturalness

Particle threshold (mass M) $\Rightarrow m_H^2 = \frac{\alpha}{4\pi} M^2 \Rightarrow$ naturalness problem

Does gravity introduce a naturalness problem? Is G_N just a coupling or is it a dynamical threshold? Could gravity cure itself in the UV?

Not been proven, but the opposite hasn't been proven either...

"Silence will save me from being wrong, but it will also deprive me of the possibility of being right." Igor Stravinsky

Quadratic divergences are fully linked to UV

If $m_H^2 \approx 0$ at Λ and no intermediate-mass thresholds \Rightarrow $\frac{d m_H^2}{d \ln \mu} = \frac{3 m_H^2}{8 \pi^2} \left(2 \lambda + y_t^2 - \frac{3}{4} g_2^2 - \frac{3}{20} g_1^2 \right)$ multiplicative renormalization

Quadratic divergences are fully linked to UV

If $m_H^2 \approx 0$ at Λ and no intermediate-mass thresholds \Rightarrow $\frac{d m_H^2}{d \ln \mu} = \frac{3 m_H^2}{8 \pi^2} \left(2 \lambda + y_t^2 - \frac{3}{4} g_2^2 - \frac{3}{20} g_1^2 \right)$ multiplicative renormalization

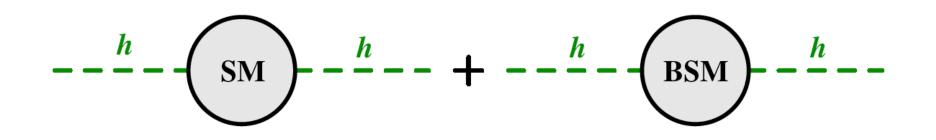
UV naturalness

- Accept UV miracle
- Forbid dangerous massive threshold

St. Thomas Aquinas in Summa contra gentiles

Miracle of 3rd degree: God does something that nature can do, but without intervention of a natural agent. Miracle of 2nd degree: God does something that nature can do, but without natural temporal order. Miracle of 1st degree: God does something that nature can never do.

Summa contra naturalitatem



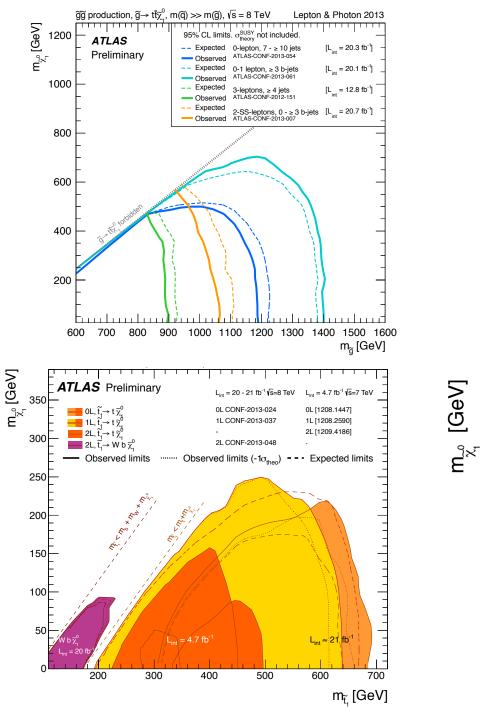
Miracle of 3rd degree: Gravity cures itself in UV and does not affect m_H (hypercharge asymptotic freedom? Landau poles?) Miracle of 2nd degree: Gravity cures itself and the SM in the UV, leaving no quadratic divergences. Miracle of 1st degree: Gravity cures UV and IR contributions to m_{H} . 19

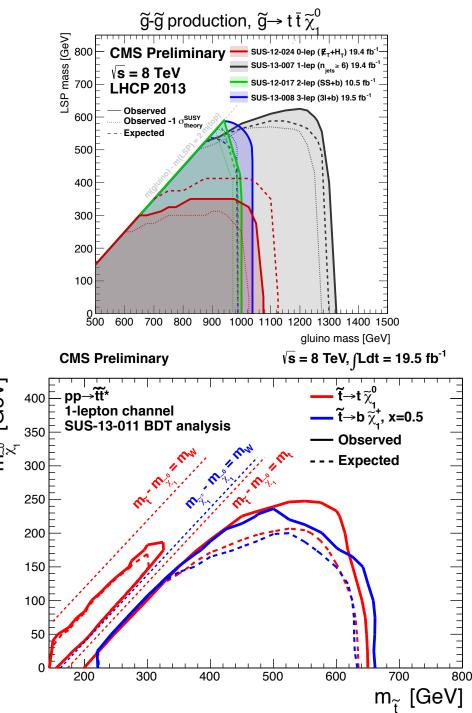
- Accept UV miracle (2nd or 3rd degree)
- Forbid dangerous massive threshold

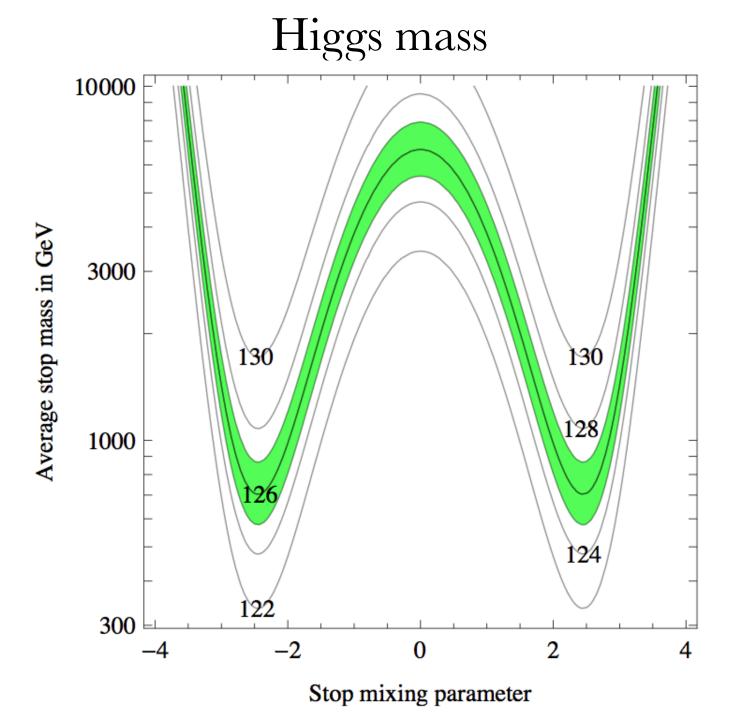
- Extreme possibility: $SM + \text{light } v_R \text{ account}$ for DM, inflation, baryogenesis Shaposhnikov et al.
- $\begin{tabular}{ll} \mbox{Room for new physics at the EW scale, with some exceptions for particle weakly coupled to the Higgs (M_R < 10^7 GeV$) & Farina et al. \end{tabular} \end{tabular}$
- No explanation for the cosmological constant

IR naturalness

New physics shuts off Higgs sensitivity to quantum corrections above TeV


- Supersymmetry
- Technicolor
- Extra dimensions
- Composite Higgs


IR naturalness is under siege


- 1. LHC direct bounds
- 2. Higgs mass
- 3. Higgs couplings
- 4. EW precision data
- 5. Flavour constraints
- 6. Rare processes

LHC direct bounds

Are the LHC bounds problematic for naturalness?

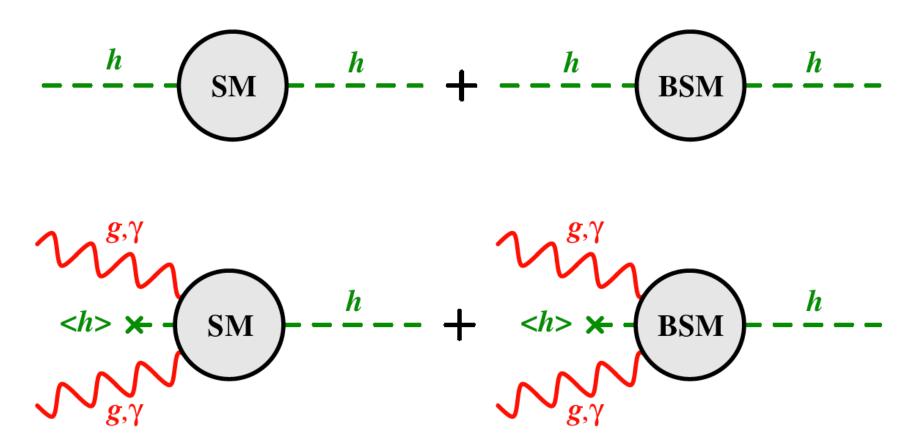
$$\frac{\delta M_h^2}{M_h^2} = \frac{3\lambda_t^2 \tilde{m}_t^2}{2\pi^2 M_h^2} \ln \frac{\Lambda}{\tilde{m}_t} \approx \frac{140}{140} \left(\frac{\tilde{m}_t}{700 \text{ GeV}}\right)^2 \left(\frac{\ln \Lambda/\tilde{m}_t}{30}\right)$$

10² is much smaller than 10³⁴, but it is larger than 1 Can naturalness be saved?

 Small log: low mediation scale supersoft & Dirac gauginos
Hide susy: compressed spectra R-parity violation new decay chains
New contributions to Higgs quartic: NMSSM

new gauge groups or vector-like ferm.

There are still regions of moderate fine-tuning...


... but often the reduction in the EW-scale tuning comes at the price of an increase of the tuning in theory space There are still regions of moderate fine-tuning...

... but often the reduction in the EW-scale tuning comes at the price of an increase of the tuning in theory space

Situation is similar for the composite Higgs **See talk by R. Contino**

Higgs couplings

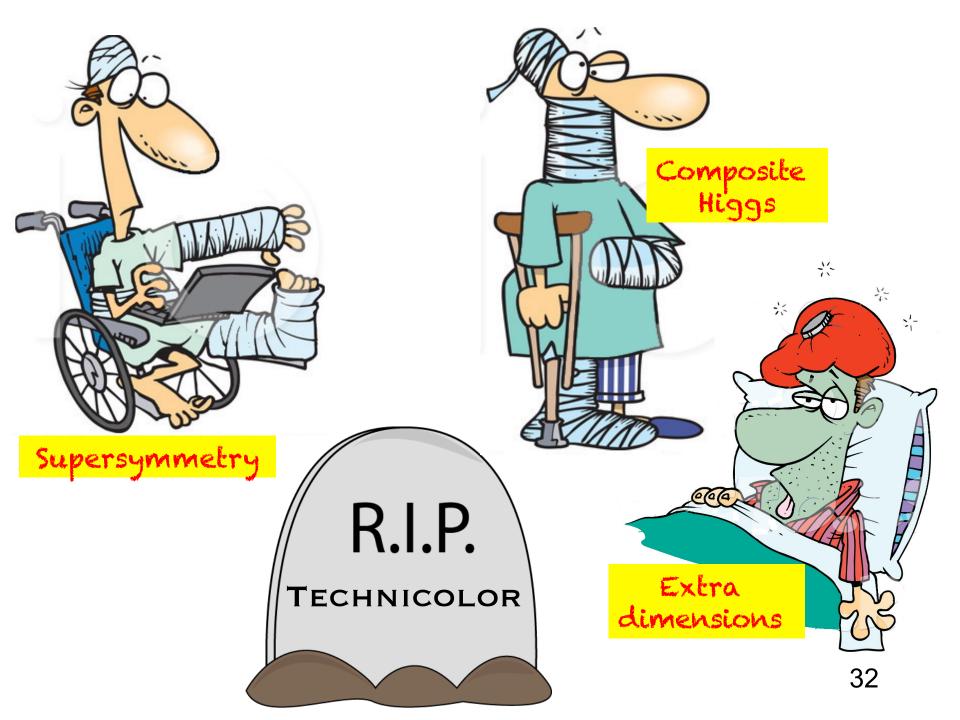
The more natural the Higgs is, the more its properties deviate from SM.

$$\frac{\sigma(gg \to h)}{\sigma(gg \to h)_{\rm SM}} = (1 + \Delta_t)^2 \qquad \frac{\Gamma(h \to \gamma\gamma)}{\Gamma(h \to \gamma\gamma)_{\rm SM}} = (1 - 0.3\Delta_t)^2$$
$$\Delta_t \approx \frac{m_t^2}{4} \left(\frac{1}{\tilde{m}_{t_1}^2} + \frac{1}{\tilde{m}_{t_1}^2} - \frac{A_t^2}{\tilde{m}_t^4}\right) \approx \left(\frac{700 \text{ GeV}}{\tilde{m}_t}\right)^2 3\%$$
$$\frac{\delta[\sigma(gg \to h)\Gamma(h \to \gamma\gamma)]}{\sigma(gg \to h)_{\rm SM}} = \begin{cases} 50\% \text{ (for } \tilde{m}_t = 200 \text{ GeV} \\ 4\% \text{ (for } \tilde{m}_t = 700 \text{ GeV} \end{cases}$$

- Naturalness is deeply rooted in EFT approach to physical phenomena
- Testing naturalness of the Higgs has far-reaching consequences for particle physics

- Naturalness is deeply rooted in EFT approach to physical phenomena
- Testing naturalness in Higgs has far-reaching consequences for particle physics

Unnaturalness


- Multiverse has the virtue of addressing both Higgs and CC problems
- New physics is possible (but not guaranteed)
- Offers best option for susy models after LHC8

- Naturalness is deeply rooted in EFT approach to physical phenomena
- Testing naturalness in Higgs has far-reaching consequences for particle physics
 - UV Naturalness
 - Relies on unproven quantum-gravity miracles
 - New physics is possible (with highlyconstrained mass scales)

- Naturalness is deeply rooted in EFT approach to physical phenomena
- Testing naturalness in Higgs has far-reaching consequences for particle physics

IR Naturalness

- Most welcome outcome
- New physics is guaranteed
- Heavy casualties after LHC8 ...

