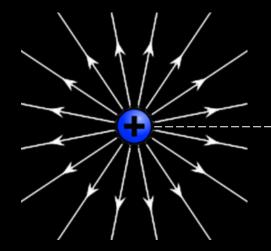

Magnetic Monopoles in the Cosmos and at the LHC

Arttu Rajantie MoEDAL Physics Workshop CERN, 20 June 2012

Maxwell Equations

 $ec
abla \cdot ec E$ $ho_{
m E}$ $ho_{
m M}$ $\vec{\nabla} \cdot \vec{B}$ $\partial \vec{B}$ $\vec{\nabla} \times \vec{E}$ \vec{j}_{M} ∂t $\partial \vec{E}$ $\vec{\nabla} \times \vec{B}$ \vec{j}_{E} ∂t

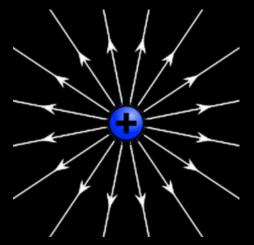

Duality $\vec{E} \leftrightarrow \vec{B}$

Dirac Monopole (1931)

Vector potential $\vec{A}(\vec{r}) = \frac{g}{4\pi |\vec{r}|} \frac{\vec{r} \times \vec{n}}{|\vec{r}| - \vec{r} \cdot \vec{n}}$

- Dirac string: Singularity along \vec{n}
- QM: Unobservable if $g = 2\pi/e$

Dirac Monopole (1931)

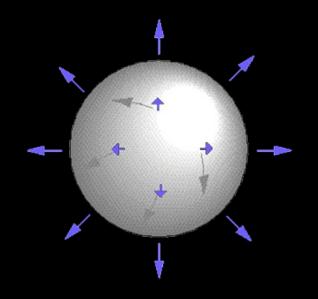


- Dirac quantisation condition: All electric and magnetic charges must satisfy $\frac{eg}{2\pi} \in \mathbb{Z}$
- Existence of monopoles would explain observed quantisation of electric charge
- "…one would be surprised if Nature had made no use of it"

Dirac Monopole (1931)

- Magnetic Coulomb field: $\vec{B}(\vec{r}) = \frac{g}{4\pi} \frac{\vec{r}}{|\vec{r}|^3}$
- Magnetic charge localised at a point
- Divergent energy: $E = \int d^3x \frac{\vec{B}^2}{2} \sim g^2 \Lambda \sim \frac{\Lambda}{e^2}$

QFT of Monopoles



- Full quantum calculation: Monopole loops
- Difficult to formulate:

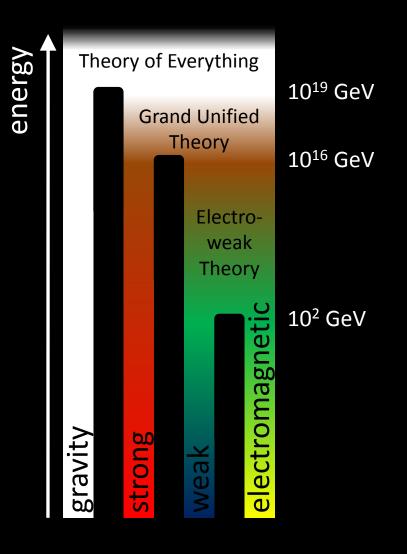
Two vector potentials (Schwinger 1975)

Strong coupling
$$g = \frac{2\pi}{e} \gg 1$$

t Hooft-Polyakov Monopole (1974)

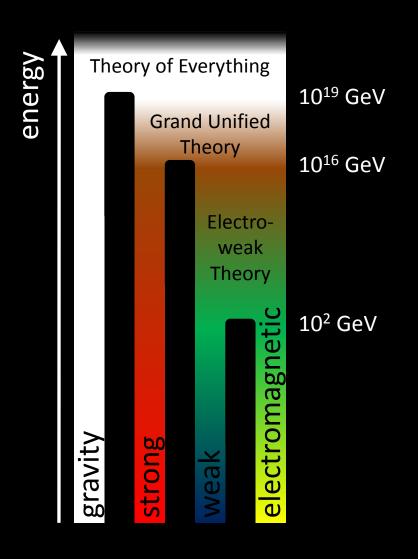
- Smooth "hedgehog" solution in SU(2)+adjoint Higgs
- Magnetic charge $g = 4\pi/e$
- Finite mass $M \approx \frac{4\pi v}{e} \sim \frac{\overline{m}}{e^2}$

t Hooft-Polyakov Monopole (1974)

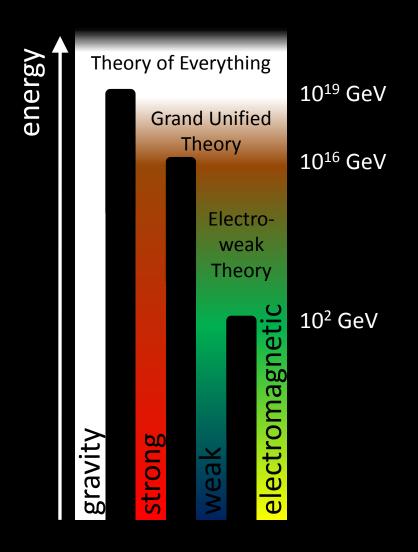


t Hooft-Polyakov Monopole (1974)

Exist whenever a simple Lie group is broken to something with a U(1) factor: Grand Unification


Grand Unification

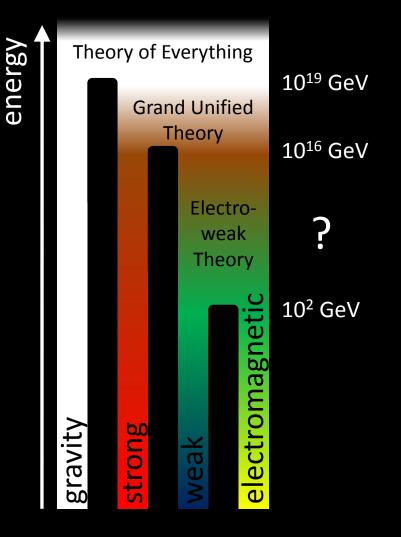
- Standard Model:
 EM & weak forces unified above 100 GeV
- Grand Unified Theory (GUT): Electroweak & strong forces unified above 10¹⁶ GeV
 - e.g. $SU(5) \rightarrow SU(3) \times SU(2) \times U(1)$


GUT Monopoles

- Generic prediction of GUTs
- Mass typically at GUT scale M~10¹⁷ GeV
- Also dyons with both electric and magnetic charge

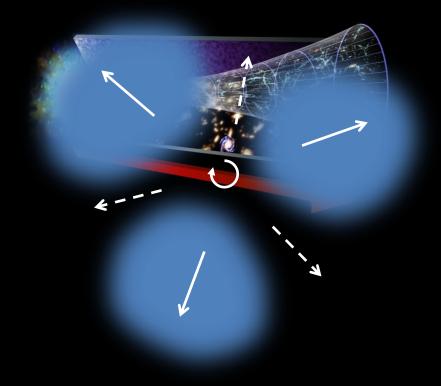
GUT Monopoles

- More complex GUTs, e.g. SO(10)
- Monopoles with different charges



String Theory Monopoles

- S-duality:
 - Any superstring theory has magnetic monopoles
- ► Typical mass $M \sim \frac{M_{\rm Pl}}{e} \sim 10^{20} {\rm GeV}$
- Can be reduced by large extra dimensions or warped compactification, perhaps even to M~10 TeV (Witten 2002)


Other Light Monopoles

- Massive range of energies between EW and GUT: Plenty of room for new physics
- Cho-Maison monopole (1996): Dirac solution generalised to electroweak theory
- Monopoles do not have to arise from unification

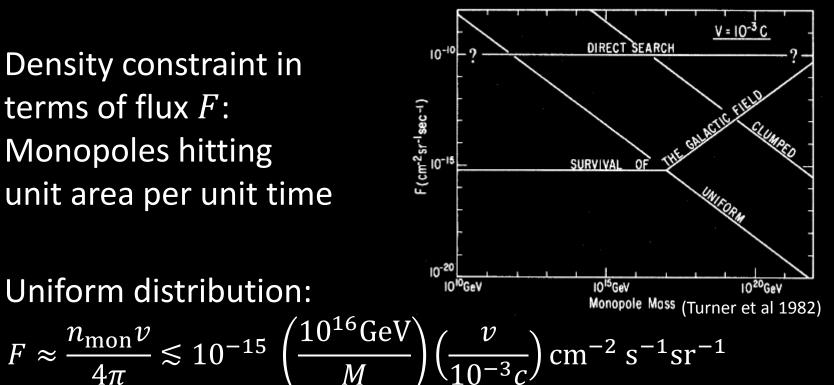
Monopoles in Cosmology

- Hot Big Bang: GUT symmetry breaks in a phase transition
- The Higgs field chooses a direction randomly
- ▶ Kibble (1976): Monopoles form, at least one per horizon $\rightarrow n_{mon} \sim H^{-3}$

Monopole Problem

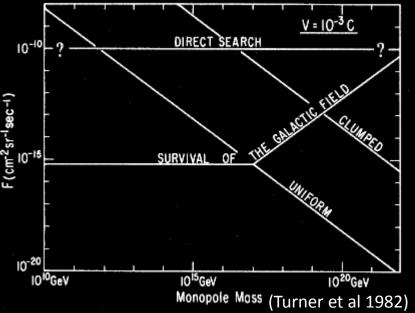
 Monopoles annihilate until they cannot find partners: Density decreases to

$$n_{\rm mon} \sim 10^{-9} \left(\frac{M}{10^{16} \text{ GeV}} \right) T^3 \sim 10^{-2} \left(\frac{M}{10^{16} \text{ GeV}} \right) \text{m}^{-3}$$


(Zel'dovich & Khlopov 1979, Preskill 1979)

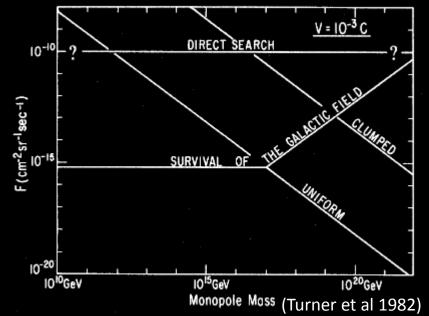
- Total energy density in the universe: $\rho \sim 6 \text{ GeV m}^{-3}$
- Monopoles exceed this unless $M \lesssim 10^{10} {
 m GeV}$
- Guth (1981): Period of inflation (accelerating expansion) dilutes monopoles away

Monopole Problem

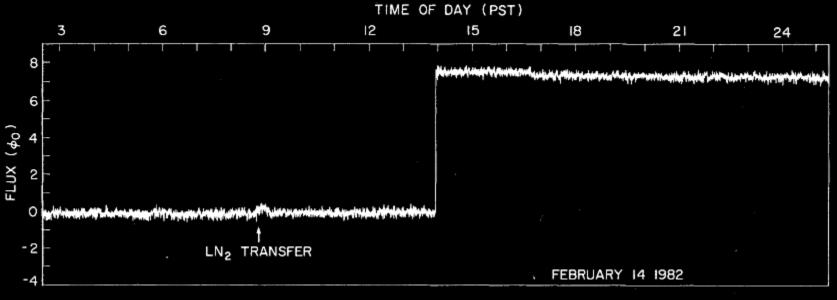

Density constraint in terms of flux *F*: Monopoles hitting unit area per unit time

Uniform distribution:

Parker Bound (1970)


- Galactic magnetic fields $B \sim 1 \mu G$
- If M ≤ 10¹⁷GeV, this creates a magnetic current, which dissipates the field
- Sets an upper bound on flux $F = \frac{nv}{4\pi} \lesssim 10^{-15} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$

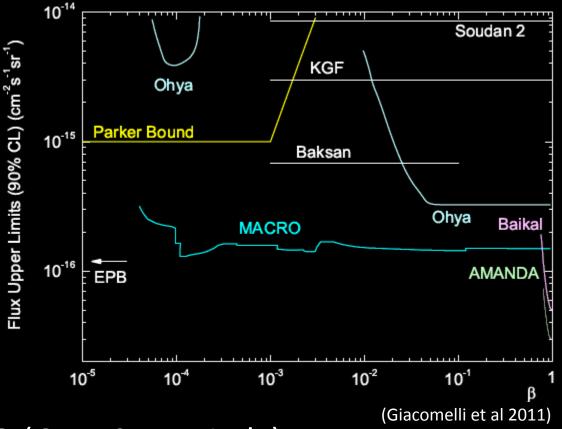
Bound gets weaker at higher M


Parker Bound (1970)

- If $M \gtrsim 10^{17} \text{GeV}$, monopoles remain bound to galaxies
- Constraint from the total mass of the Milky Way:

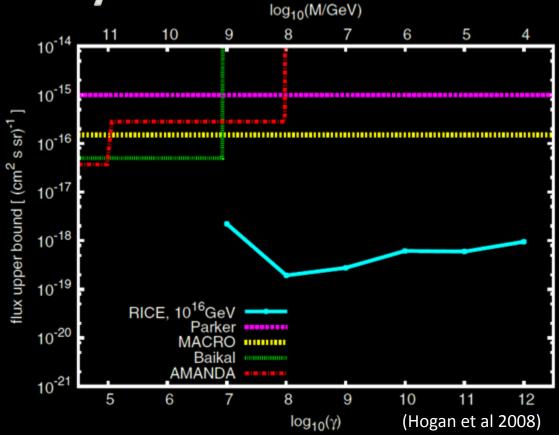
$$F \lesssim 10^{-13} \left(\frac{10^{16} \text{GeV}}{M}\right) \left(\frac{v}{10^{-3} c}\right) \text{cm}^{-2} \text{ s}^{-1} \text{sr}^{-1}$$

Cosmic Rays



(Cabrera 1982)

Early detections:


- Berkeley 1975, Stanford 1982, Imperial 1986
- All turned out to be false

Cosmic Rays

- MACRO (Gran Sasso, Italy):
 - Upper bound $F \lesssim 10^{-16} \text{ cm}^{-2} \text{ s}^{-1} \text{sr}^{-1}$ over wide mass range

Cosmic Rays

- RICE (South Pole):
 - Intermediate mass monopoles $F \lesssim 10^{-18} \text{ cm}^{-2} \text{ s}^{-1} \text{sr}^{-1}$

Monopole Problem?

Preskill (1979):

Monopole density today $n_{\rm mon} \sim 10^{-2} \left(\frac{M}{10^{16} \, {\rm GeV}} \right) {\rm m}^{-3}$

- Light monopoles $M \leq 10^{11} \text{GeV}$ are relativistic, so $F \approx \frac{n_{\text{mon}}c}{4\pi} \approx 10 \left(\frac{M}{10^{16} \text{ GeV}}\right) \text{cm}^{-2} \text{s}^{-1} \text{sr}^{-1}$
- Compatible with RICE bound only if $M \lesssim 1 \text{MeV}$
- Therefore we do need inflation to wipe out the monopoles!

Accelerator Searches

Direct searches:

- Tevatron, LEP, HERA \rightarrow Lower bound $M \gtrsim 1 \text{ TeV}$ • MoEDAL: Up to 7 TeV
- Indirect searches:
 - Virtual monopoles

 $M \gtrsim 500 \text{ GeV}$

monopole

Large theoretical uncertainties

TeV-scale monopoles

- Possible, but not really predicted by any theory
 - Perhaps large extra dimensions, or simply unrelated to unified theories
- Mass relation $M \sim \frac{\Lambda}{e^2}$ means there would be lots of new exciting physics at accessible energies
- Monopoles would be a fantastic probe:
 - Absolutely stable
 - Strong EM interaction
 - Easy to handle

Summary

- Monopoles are perhaps the best motivated new particles:
 - Explain charge quantisation
 - Exist in GUTs, string theory
- Produced copiously in the early universe, wiped away by inflation:
 - Stringent bounds from astrophysics, cosmic rays
- TeV-scale monopoles possible
 - Detectable in MoEDAL
 - Would open up a window to exciting new physics

(For more: See AR, <u>Contemporary Physics 2012</u>)