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Introduction 

For complex electromagnetic structures discretization of 3D space leads to dense matrix equations constituting millions of unknowns. These matrix 
equations are solved iteratively where the matrix vector multiplications (MVMs) result in the need for large memories and processor speeds that often 
exceed the performance of even the best computers. The Multilevel Fast Multipole Method (MLFMM) could be more cost efficient than the commonly used 
codes for particle accelerators as it might greatly speed up the computation and reduce the memory requirements by accelerating the matrix vector 
multiplication. The code will be used to calculate the fields for guiding and accelerating structures in existing and future accelerators, such as the LHC and 
CLIC, and also for the simulations of electromagnetic fields of beam diagnostic instruments, such as beam position monitors for the ELENA ring at CERN, 
and will be benchmarked against other, more conventional codes.  
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A typical simulation environment based on MLFMA [2]. 

The Fast Multipole Method based on the single level grouping 
strategy was developed to speed up the calculations of long-ranged 
forces in the n-body problem. FMM provides an efficient way of 
performing the Matrix Vector Multiplication (MVMs) which could be 
evaluated in           flops. The clustering idea of FMM can be 
extended and applied in a recursive manner, leading to MLFMA [1] 
which enables the solution of even large problems by reducing the 
complexity of MVMs  to                           [2] or                      [3].  
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MLFMM  Formulation 
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Boxes in the near and far zones for a given box (red) according to the one-box buffer scheme.[2] 

Recursive clustering of an arbitrary object and the construction of the multilevel tree structure [2] 

A Comparative Analysis: By applying the MLFMM, memory requirements are reduced to 3.2 GB and 7.2 GB [4] 

How the Algorithm Works?  
 Based on a hierarchical decomposition of a cube named as the 

oct-tree grouping. 
 Group center to center distances are fixed at each level. 
 Only one set of translation operators need to be cached, 

dramatically reducing memory. 
 

 

Formulation of the Method  
MLFMM calculates the interactions between the radiating (basis) and 
receiving (testing) elements in a group-by-group manner consisting of three 
stages:  
Aggregation: Radiated fields of boxes are calculated from the lowest level of 
the tree structure to the highest level. 
 
 
Translation: Radiated fields computed during the aggregation stage are 
translated into incoming fields. 

 
 

Disaggregation: Total incoming fields at the box centers are calculated from 
the top of the tree structure to the bottom.  
 

A Case Study  
The fighter airplane is excited with a 
plane wave, coming in from 30° 
under the horizon.  The airplane is 
simulated at 3 GHz (120 λ long) and 
4 GHz (160 λ long). 
 
Higher order Method-of-Moments 
(MoM) formulation results in: 
 1.5 million RWG unknowns at 

3GHz 
 3 million RWG unknowns at 

4GHz 
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Optimization of Beam Position Monitors  
For beams traveling at velocities much 
smaller than the speed of light, the time to 
carry out simulations of electromagnetic 
fields increases with decreasing value of 
β. As the computed volume needs to be 
significantly extended, not only can it lead 
to an excessive number of mesh cells but 
also make the algorithm fail to find a 
stable step size required to perform the 
calculations. The implementation of faster 
algorithms for the optimization of BPMs 
could potentially help speed up such 
studies considerably.  

β

ELENA pickup in CST Microwave Studio 
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