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Hypothesis testing i

One of the most common uses of statistics in particle physics is
Hypothesis Testing (e.g. for discovery of a new particle)
» assume one has pdf for data under two hypotheses:
+ Null-Hypothesis, Ho: eg. background-only
- Alternate-Hypothesis H+: eg. signal-plus-background

» one makes a measurement and then needs to decide whether
to reject or accept Ho
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Hypothesis testing S S |
Before we can make much progress with statistics, we need

to decide what it is that we want to do.
» first let us define a few terms:

Actual condition

Guilty Not guilty
* Rate Of Type I error « .False.Positive
Verdict of True Positive (i.e. guilt reported
- Rate of Type 1 ﬁ 'guilty’ unfairly)
Type | error
Decision
« Power = 1 — ﬁ False Negative

Verdict of (i.e. guilt
'not guilty' not detected)
Type Il error

True Negative

Treat the two hypotheses asymmetrically
» the Null is special.
- Fix rate of Type | error, call it “the size of the test”
Now one can state “a well-defined goal”
» Maximize power for a fixed rate of Type | error
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Hypothesis testing coenren (Y

PARTICLE PHYSICS '

The idea of a 50" discovery criteria for particle physics is really a
conventional way to specify the size of the test

» usually 50 corresponds to o = 2.87- 10"

* eg. a very small chance we reject the standard model

In the simple case of number counting it is obvious what region is
sensitive to the presence of a new signal

» but in higher dimensions it is not so easy

s ¥ «&;:5 %
1 | accept * *¢

accept
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The Neyman-Pearson Lemma e,

PARTICLE PHYsSICS '

In 1928-1938 Neyman & Pearson developed a theory in which one
must consider competing Hypotheses:

- the Null Hypothesis H, (background only)
- the Alternate Hypothesis H; (signal-plus-background)

Given some probability that we wrongly reject the Null Hypothesis
o= P(x € W|H,y)

(Convention: if data falls in W then we accept Ho)

Find the region W such that we minimize the probability of wrongly
accepting the Hy (when Hj is true)

ﬁ:P(Q?EW’Hl)
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The Neyman-Pearson Lemma e, @Y

PARTICLE PHYsSICS '

The region W that minimizes the probability of wrongly
accepting Hy is just a contour of the Likelihood Ratio

P(m Hl)
P($ H())

Any other region of the same size will have less power

> kq

The likelihood ratio is an example of a Test Statistic, eg.
a real-valued function that summarizes the data in a way
relevant to the hypotheses that are being tested
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cenren ron W

A short proof of Neyman-Pearson et

Consider the contour of the likelihood ratio that has size a given
size (eg. probability under Hop is 1-(Y)
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A short proof of Neyman-Pearson

CENTER FOR
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Now consider a variation on the contour that has the same

size
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A short proof of Neyman-Pearson S i

P(\_|Hy) = P(_/|Hy)

Now consider a variation on the contour that has the same size
(eg. same probability under Ho)
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A short proof of Neyman-Pearson dsimior o

P(\_|Hy) = P(_/|Hy)
P(a|H)
P e[ H)

P(\_|H1) < P(\_|Ho)k,

Because the new area is outside the contour of the likelihood
ratio, we have an inequality

< kq

Kyle Cranmer (NYU) CLASHEP, Peru, March 2013

66




A short proof of Neyman-Pearson dsimior o

P(\_|Hy) = P(_/|H)y)
P(z|Hy)
P(xz|Hy)

P(z|H,)
P(z|Ho)

P(\_|H1) < P(\_|Ho)k, P(_/|H1) > P(_/|Ho)k,

And for the region we lost, we also have an inequality

< kq > ko

Together they give...
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A short proof of Neyman-Pearson dsimior o

P(\_|Hy) = P(_ |Hy)

P(x|H4) P(z|Hy)
P Ho) < kg P(a|Hy) > ke
P(k|H1) < P(k‘HO)ka P(/‘Hl) > P(/‘Ho)ka

P(\_|H1) < P(_/|H1)

The new region region has less power.
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2 discriminating variables 5zz::;:f.::v"s?cs(‘Tg

Often one uses the output of a neural network or multivariate algorithm in
place of a true likelihood ratio.

» That’s fine, but what do you do with it?
» If you have a fixed cut for all events, this is what you are doing:

L1 L2

fo(q) fs(q) Ltot — L1 ° L2

gio=Inlis=InL; +Inls=q; +q

——

q
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Experiments vs. Events

|deally, you want to cut on
the likelihood ratio for your
experiment

» equivalent to a sum of
log likelihood ratios

Easy to see that includes
experiments where one
event had a high likelihood
and the other one was
relatively small

fo(q12) fsr(q12)
=

di2 = q1 1+ g2

q2

COSMOLOGY AND -—
PARTICLE PHYsSICS '
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An optimal way to combine :fzzr:::f.::y"s?cs(‘Tg

Special case of our Nenan P i s(n. | n; 8ifs(2ij)+bifo(is)
. : i|si + b;
general probability model (@ = Lix|Hy) = L1, o Gl . )11, — Sitbi
from yesterday L(x|Ho) LI " Pois(ng|b:) [ 1" /(i)
(no nuisance parameters) Nehan i foli))
q_an__St0t+Z Zln (1—|— )
b fo(i5)
o1z . @ LEP : .
TSl —— Observed  my=115GeV/? Instead of simply counting
e fon events, the optimal test statistic is

e
[y
I

plus background

equivalent to adding events
weighted by

&

=

&
|

Probability density

In(1+signal/background ratio)

&

=]

=
|

002 | The test statistic is a map T.data — R

TR T By repeating the experiment many
T= -2 In(Q) times, you obtain a distribution for T
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p-values comomam

Instead of choosing to accept/reject Ho
one can compute the p-value / / T‘HO

If the model for the data

the p-value also depends
on .

pla) = TOO F(T|e)dT = / £(D|a) O(T(D) — Tp) dD = P(T > Tp|a)

f (T | (1) depends on parameters a
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p-values o
When the model has nuisance parameters, only reject the null if
p(a) sufficiently small for all values of the nuisance parameters.

If the model for the data

the p-value also depends
on .

oo

. f(T|a)dT = /f(D|a) 0(T (D) —1Ty)dD = P(T > Tylor)

f (T | (1) depends on parameters a
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The Profile Likelihood Ratio @Tg
Consider our general model with a single parameter of interest u

» let ©=0 be no signal, x=1 nominal signal
In the LEP approach the likelihood ratio is equivalent to:

L(M: 179) f(D|/L: 179)

QLEP = T(,=0,6) — f(Dlu=10,9)

» but this variable is sensitive to uncertainty on v and makes no use of
auxiliary measurements a

Alternatively, one can define profile likelihood ratio

A A

Ny = :0) _ (DGl 04 D,G))
L(j,0) (D, Gl 6)

» where é(u; D,G) is best fit with x fixed (the constrained maximum
likelihood estimator, depends on data)

» and é and [t are best fit with both left floating (unconstrained)
» Tevatron used Qtev = Mp=1)/M(n=0) as generalization of QLep
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An example
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COSMOLOGY AND L

Essentially, you need to fit your model to the data twice:
once with everything floating, and once with signal fixed to O
L(p=0,0(p=0)) _ f(D,Gln=0,0(p=0;D,G))

Ap=0)= -
L(j,0)
f(D,Glia, 0)
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Properties of the Profile Likelihood Ratio cosmetocy ave

PPPPPPPPPPPPPPP

After a close look at the profile likelihood ratio

A
A A

Apt) = L(p,0(n)) _ f(D, G| 0(1; D, G))
L(j1,0) f(D,G|ii, 0)

one can see the function is independent of true values of 6
» though its distribution might depend indirectly

Wilks’s theorem states that under certain conditions the

distribution of -2 In 4 (u=uo) given that the true value of u is uo
converges to a chi-square distribution

» more on this tomorrow, but the important points are:

» “asymptotic distribution” is known and it is independent of 4!
- more complicated if parameters have boundaries (eg. u= 0)

Thus, we can calculate the p-value for the background-only
hypothesis without having to generate Toy Monte Carlo!
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Toy Monte Carlo ;:‘:i::;:f.:;;";cs(‘Tg
Explicitly build distribution by generating “toys” / pseudo experiments assuming a
specific value of x and v.

» randomize both main measurements @={x} and auxiliary measurements ¢={a}

» fit the model twice for the numerator and denominator of profile likelihood ratio
» evaluate -2In A(u) and add to histogram

Choice of x is straight forward: typically =0 and x=1, but choice of ¢ is less clear
» more on this tomorrow

This can be very time consuming. Plots below use millions of “toy” pseudo-
experiments __
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Experimentalist Justification

So far this looks a bit like magic. How can you claim that you
iIncorporated your systematic just by fitting the best value of your
uncertain parameters and making a ratio?

It won't unless the the parametrization is sufficiently flexible.

CENTER FOR
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PARTIC LE PHYsSICS '

So check by varying the settings of your simulation, and see if the
profile likelinood ratio is still distributed as a chi-square

g Nominal (Fast Sim)
gl0E —— Smeared P7°°
© E
s F 5, A TLAS @ scale 1 |
T2k H Q? scale 2
S = Q% scale 3
sl Q® scale 4
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E bl p ol L | L | L | L
0
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log Likelihood Ratio

Here it is pretty stable, but

it’s not perfect (and this is

a log plot, so it hides some
pretty big discrepancies)

For the distribution to be
independent of the nuisance

parameters your

parametrization must be

sufficiently flexible.
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A very important point

If we keep pushing this point to the extreme, the physics problem

goes beyond what we can handle practically

The p-values are usually predicated on the assumption that the true

distribution is in the family of functions being considered

» eg. we have sufficiently flexible models of signal & background to

incorporate all systematic effects
» but we don’t believe we simulate everything perfectly

» ..and when we parametrize our models usually we have further

approximated our simulation.
- nature -> simulation -> parametrization

At some point these approaches are limited by honest systematics
uncertainties (not statistical ones). Statistics can only help us so much

after this point. Now we must be physicists!
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