Skip to main content

Quantum Technology Initiative Journal Club

Europe/Zurich
513/R-070 - Openlab Space (CERN)

513/R-070 - Openlab Space

CERN

15
Show room on map
Michele Grossi (CERN)
Description

Weekly Journal Club meetings organised in the framework of the CERN Quantum Technology Initiative (QTI) to present and discuss scientific papers in the field of quantum science and technology. The goal is to help researchers keep track of current findings and walk away with ideas for their own research. Some previous knowledge of quantum physics would be helpful, but is not required to follow the talks.

To propose a paper for discussion, contact: michele.grossi@cern.ch

    • 16:00 17:00
      CERN QTI Journal CLUB
      Convener: Dr Michele Grossi (CERN)
      • 16:00
        Mar Tejedor 40m

        TITLE: Distributed Quantum Circuit Cutting for Hybrid Quantum-Classical High-Performance Computing

        LINK to the PAPER: https://arxiv.org/abs/2505.01184

        ABSTRACT:
        Most quantum computers today are constrained by hardware limitations, particularly the number of available qubits, causing significant challenges for executing large-scale quantum algorithms. Circuit cutting has emerged as a key technique to overcome these limitations by decomposing large quantum circuits into smaller subcircuits that can be executed independently and later reconstructed. In this work, we introduce Qdislib, a distributed and flexible library for quantum circuit cutting, designed to seamlessly integrate with hybrid quantum-classical high-performance computing (HPC) systems. Qdislib employs a graph-based representation of quantum circuits to enable efficient partitioning, manipulation and execution, supporting both wire cutting and gate cutting techniques. The library is compatible with multiple quantum computing libraries, including Qiskit and Qibo, and leverages distributed computing frameworks to execute subcircuits across CPUs, GPUs, and quantum processing units (QPUs) in a fully parallelized manner. We present a proof of concept demonstrating how Qdislib enables the distributed execution of quantum circuits across heterogeneous computing resources, showcasing its potential for scalable quantum-classical workflows.

        Speaker: Mar Tejedor Ninou