Quantum Technology Initiative Journal Club

Europe/Zurich
513/R-070 - Openlab Space (CERN)

513/R-070 - Openlab Space

CERN

15
Show room on map
Michele Grossi (CERN)
Description

Weekly Journal Club meetings organised in the framework of the CERN Quantum Technology Initiative (QTI) to present and discuss scientific papers in the field of quantum science and technology. The goal is to help researchers keep track of current findings and walk away with ideas for their own research. Some previous knowledge of quantum physics would be helpful, but is not required to follow the talks.

To propose a paper for discussion, contact: michele.grossi@cern.ch

Zoom Meeting ID
63779300431
Host
Michele Grossi
Alternative host
Matteo Robbiati
Passcode
55361000
Useful links
Join via phone
Zoom URL
    • 16:00 17:00
      CERN QTI Journal CLUB
      Convener: Dr Michele Grossi (CERN)
      • 16:00
        David Zueco 40m

        TITLE: Quantum kernels to learn the phases of quantum matter
        Link: https://arxiv.org/abs/2109.02686

        ABSTRACT:
        Classical machine learning has succeeded in the prediction of both classical and quantum phases of matter. Notably, kernel methods stand out for their ability to provide interpretable results, relating the learning process with the physical order parameter explicitly. Here, we exploit quantum kernels instead. They are naturally related to the \emph{fidelity} and thus it is possible to interpret the learning process with the help of quantum information tools. In particular, we use a support vector machine (with a quantum kernel) to predict and characterize second order quantum phase transitions. We explain and understand the process of learning when the fidelity per site (rather than the fidelity) is used. The general theory is tested in the Ising chain in transverse field. We show that for small-sized systems, the algorithm gives accurate results, even when trained away from criticality. Besides, for larger sizes we confirm the success of the technique by extracting the correct critical exponent ν. Finally, we present two algorithms, one based on fidelity and one based on the fidelity per site, to classify the phases of matter in a quantum processor.

        Speaker: David Zueco