Speaker
Ulrich Parzefall
(Freiburg University)
Description
In order to harvest the maximum physics potential of the CERN Large Hadron Collider (LHC), it is foreseen to significantly increase the LHC luminosity by upgrading the LHC towards the HL-LHC (High Luminosity LHC). Especially the final upgrade (Phase-II Upgrade) foreseen for 2021 will mean unprecedented radiation levels, exceeding the LHC fluences by roughly an order of magnitude. Due to the radiation damage limitations of the silicon sensors presently used, the physics experiments will require new tracking detectors for HL-LHC operation. All-silicon central trackers are being studied in ATLAS, CMS and LHCb, with extremely radiation hard silicon sensors to be employed on the innermost layers.
Within the CERN RD50 Collaboration, a massive R&D programme is underway across experimental boundaries to develop silicon sensors with sufficient radiation tolerance. One research topic is to gain a deeper understanding of the connection between the macroscopic sensor properties such as radiation-induced increase of leakage current, doping concentration and trapping, and the microscopic properties at the defect level. We also study sensors made from p-type silicon bulk, which have a superior radiation hardness as they collect electrons instead of holes, exploiting the lower trapping probability of the electrons due to their higher mobility. Another sensor option under investigation is to use silicon produced with the Czochralski-process. The high oxygen content in the Czochralski-Silicon has been shown to have a beneficial influence on some of the effects of radiation damage. A further area of activity is the development of advanced sensor types like 3D silicon detectors designed for the extreme radiation levels expected for the vertexing layers at the HL-LHC. These detectors in general have electrodes in the form of columns etched into the silicon bulk, which provide a shorter distance for charge collection and depletion, which reduces trapping and full depletion voltage. We will present results of several detector technologies and silicon materials at radiation levels corresponding to HL-LHC fluences. Based on these results, we will give recommendations for the silicon detectors to be used at the different radii of tracking systems in the LHC detector upgrades.
Author
Ulrich Parzefall
(Freiburg University)