Conveners
DM I
- Ying-Ying Li (Fermilab)
The presence of a non-baryonic Dark Matter (DM) component in the Universe is inferred from the observation of its gravitational interaction. If Dark Matter interacts weakly with the Standard Model (SM) it could be produced at the LHC. The ATLAS experiment has developed a broad search program for DM candidates, including resonance searches for the mediator which would couple DM to the SM,...
Limitations on the most general mono-X Dark Matter signature at colliders motivate searches beyond this, such as multilepton plus missing energy signatures. In this talk I present our latest limits on the inert 2-Higgs Doublet model (I2HDM) and Minimal Fermion Dark Matter model (MFDM) for 8/13 TeV pp collisions at the LHC, producing 2-3 leptons plus missing energy final states, using...
Searches in CMS for dark matter particles, mediators, and dark sector extensions will be presented. Various final states, topologies, and kinematic variables are explored utilizing the full Run-II data-set collected at the LHC.
Additional gauge interactions are ubiquitous in well motivated extensions of the Standard Model (SM); a particularly simple example is that of an extra $U(1)$ gauge group. In this work, we study the case in which there are simultaneously both kinetic mixing and mass mixing (arising from the Higgs sector) of this extra $U(1)$ into the SM. We show that the additional gauge boson, called the...
We consider a $U(1)_{B-L}$ model with a $Z^\prime$ portal Dirac fermion dark matter (DM) $\chi$ of low mass which couples very weakly to the $B - L$ gauge boson $Z^\prime$. An arbitrary $B-L$ charge $Q\neq \pm1, \pm 3$ of the DM $\chi$ ensures its stability. Motivated by the sensitivity reach of forthcoming ``Lifetime Frontier" experiments, we focus on the $Z^\prime$ mass, $m_{Z^\prime}$, in...