Conveners
Plenary: Plenary 1
- Mu-Chun Chen (University of California - Irvine)
Plenary: Plenary 2
- Arvind Rajaraman (University of California)
Plenary: Plenary
- Shirley Li (UC Irvine)
Plenary
- Michael Ratz
Plenary
- Tim M.P. Tait (University of California, Irvine)
Plenary
- Yuri Shirman
Plenary
- Michael Ratz
Plenary
- Yuri Shirman
Plenary
- Arvind Rajaraman (University of California)
Plenary: Plenary 10
- Shirley Li (UC Irvine)
Description
Plenary talks
As a black hole tends towards maximal spin the near-horizon region develops a throat-like geometry of divergent proper volume. The development of this throat has consequences on observable phenomena. Herein we will examine two such examples. First we consider adiabatic growth of a black hole within a cloud of particles. For a high-spin black hole this process results in a finite nonzero...
It has proven surprising difficult to obtain a microscopic understanding of Dark Energy within string theory. The two main paradigms, a landscape of de Sitter vacua or slow-roll quintessence, seem to require working at the boundaries of control, which has led to much fruitful debate. I will discuss alternative scenarios for Dark Energy within string theory, in which interacting Dark Sectors...
The gauge bosons of a hidden U(1) sector seems to be one of the simplest extensions of the standard model. However, if this hidden sector includes magnetic charges a host of novel phenomena result. These include new dark matter possibilities with distinctly new way to detect them. I give an overview of some of the phenomena and theoretical understanding that hidden magnetic monopoles provide.
Magnetic monopoles and dyons are unique beasts in the zoo of Quantum Field Theory. The long range interaction between monopoles and electric charges generates an extra electromagnetic angular momentum, fundamentally changing the S-matrix for their scattering.
Though the effective field theory of Dirac monopoles and charges has been known since the ‘70, its Hilbert space has only been...
In the last decade our understanding of holography has reached the point where a resolution of Hawking's black hole information problem seems to be in reach. In this talk I'll give a high-level overview of where we are now.
In this talk, I will motivate why in the 2020s so many of us are focusing on astrophysics and cosmology as an important tool for studying one of the most challenging questions in all of particle physics: determining what exactly dark matter is comprised of. I will focus most especially on questions relating to large-scale structure an axion-like particle models, as well as on asymmetric dark...
Solutions of the strong CP problem based on modular invariance are discussed in several frameworks.
Modular transformations of string theory are shown to play a crucial role in the discussion of discrete flavor symmetries in the Standard Model. They include CP transformations and provide a unification of CP with traditional flavor symmetries within the framework of the eclectic flavor scheme. The unified flavor group is non-universal in moduli space and exhibits the phenomenon of "Local...
Semi-realistic string models offer a plausible path to uncover the flavor structure of particle physics, which improves over models based on pure traditional or pure modular flavor symmetries. Interestingly, the eclectic flavor picture they exhibit, leads to realistic patterns of fermion masses and mixings, which depend on a modulus and matter-field configuration. Further, string models...
Pulsar timing array experiments aim to detect nHz-frequency gravitational waves using high-precision timing of millisecond pulsars. Of particular interest is a stochastic gravitational wave background (SGWB), which is expected to arise predominantly from a population of inspiraling supermassive black hole binaries, but there may also be contributions from exotic cosmological sources, such as...
FASER, the ForwArd Search ExpeRiment, is an LHC experiment located 480 m downstream of the ATLAS interaction point, along the beam collision axis. FASER and its sub-detector FASERnu have two physics goals: (1) to search for new light and very weakly-interacting particles, and (2) to detect and study TeV-energy neutrinos, the most energetic neutrinos ever detected from a human-made source....
FASER, the ForwArd Search ExpeRiment, is a currently operating experiment at the Large Hadron Collider (LHC) that can detect light long-lived particles produced in the forward region of the LHC interacting point. In this paper, we study the prospect of detecting light CP-even and CP-odd scalars at FASER and FASER 2. Considering a model-independent framework describing the most general...