Speaker
Description
We present our progress towards developing a trapped ion quantum information processor and describe our robust hardware and software architecture. Our platform for storing and processing quantum information is trapped Barium ions. Because of long-lived ground and metastable atomic states and transitions in the visible wavelengths, Ba$^+$ offers exciting possibilities to encode quantum information in flexible ways and to employ low-loss, waveguide-based optical engineering for high-precision and programmable controls. We discuss our progress towards high efficiency isotope-selective loading of ions, especially $^{133}$Ba$^+$ that is radioactive (t$_{1/2}$=10.6 years) and hence can only be used in miniscule quantities, in a surface electrode trap. Furthermore, we remark on generating long chains of Barium ions, cooling them, and individually addressing them by a waveguide based optical addressing system with ultra-low (<1E-4) relative intensity crosstalk for precise and programmable control for individual Ba$^+$ qubits. In the long run, we expect the processor to be an open-access system for academic use.
We acknowledge CFREF, University of Waterloo, NSERC, and Canada Research Chairs program for funding.
Keyword-1 | Ion Trap |
---|---|
Keyword-2 | Quantum Information |