The LHCb experiment has been upgraded during the second long shutdown of the Large Hadron Collider at CERN, and the new detector is currently operating at the LHC. The Vertex Locator (VELO) is the detector surrounding the interaction region of the LHCb experiment, responsible of reconstructing the proton-proton collision (primary vertices) as well as the decay vertices of long-lived particles...
In the high-luminosity era of the Large Hadron Collider, the instantaneous luminosity is expected to reach unprecedented values, resulting in up to 200 proton-proton interactions in a typical bunch crossing. To cope with the resulting increase in occupancy, bandwidth and radiation damage, the ATLAS Inner Detector will be replaced by an all-silicon system, the Inner Tracker (ITk). The innermost...
In June 2022 the data-taking of the Belle II experiment was stopped for the Long Shutdown 1, primarily required to install the new two-layer DEPFET detector (PXD) and upgrade components of the accelerator. In May 2023 the whole silicon tracker (VXD) was extracted from Belle II and the new VXD commissioning phase began to be ready to take data by the end of 2023. We describe the challenges and...
The CMS Outer Tracker phase-2 upgrade is conditioned by the planned high-luminosity LHC (HL-LHC) project. The high radiation levels and the large pileup require a high granularity and low mass detector and the capability to handle high data rates. The OT modules will provide hit information to the Level 1 Trigger to form track segments, which allows to keep the trigger rates at a sustainable...
The Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) is an Earth orbiting satellite being developed as a joint European Space Agency (ESA) and Chinese Academy of Sciences (CAS) planetary science mission. The spacecraft is scheduled for launch in 2025 and equipped with complementing imaging instruments which will provide wide-field images with the goal of providing a more complete...
Pyxel is a powerful end-to-end detector simulations framework with the aim of being reusable, reliable and help facilitate knowledge transfer between a wide range of related fields. To show how beneficial Pyxel can be, we present an investigation into the effect of Charge Transfer Inefficiency (CTI) on an irradiated CCD-273 device produced by Teledyne-e2v, the type of detector used for the...
The China Seismo-Electromagnetic Satellite (CSES) is a scientific space program that aims to deepen the comprehension of the time correlation between the main earthquake shocks and an increase in the electron flux in the inner Van Allen belt. For this purpose, the suite of payloads on board the second CSES satellite (CSES-02) consists of several detectors to measure: the particle flux and the...
After successfully completing Phase I upgrades during LHC Long Shutdown 2, the ATLAS detector is back in operation with several upgrades implemented. The most important and challenging upgrade is in the Muon Spectrometer, where the two inner forward muon stations have been replaced with the New Small Wheels (NSW) system featuring two entirely new detector technologies: small strip Thin Gap...
ALICE (A Large Ion Collider Experiment) studies the quark-gluon plasma (QGP), a deconfined state of nuclear matter which can be obtained in ultra-relativistic heavy-ion collisions. One of the key probes for QGP characterization is the study of quarkonia and open heavy flavour production, of which ALICE exploits the muonic decay. In particular, a set of Resistive Plate Chambers (RPCs), placed...
ALICE (A Large Ion Collider Experiment) at the CERN Large Hadron Collider (LHC) is designed to study proton-proton and heavy-ion collisions at ultra-relativistic energies. The main goal is to assess the properties of quark gluon plasma (QGP), a state of matter where quarks and gluons are deconfined, reached in extreme conditions of temperature and energy density.
One of the main observables...
The resistive Micromegas technology can stably operate up to O(10 MHz/cm$^{2}$) particle rate thanks to novel resistive spark-protection structures suitable for readout pads of a few mm$^{2}$ area. These structures are made by Diamond-Like-Carbon (DLC) in a double-layer configuration in most of the investigated detectors with active surfaces of $\sim 25\, \text{cm}^{2}$ and in the new one with...
With a low energy pinhole gamma camera, spatial resolution is mainly determined by the intrinsic spatial resolution of the imaging detector, pinhole diameter and magnification ratio of the collimator. However the pinhole diameter was so far limited to around 1 mm due to the manufacturing difficulty of tungsten. To overcome the limitation of the spatial resolution of the pinhole gamma camera,...
The High Energy Particle Detector (HEPD-02) is one of the scientific payloads onboard the second China Seismo-Electromagnetic Satellite (CSES-02), one of a serie of Chinese-Italian space missions dedicated to monitoring of the near-Earth environment and to study the lithosphere-atmosphere-ionosphere coupling mechanisms.
The launch of CSES-02 is foreseen in the first half of 2024.
HEPD-02 is...
CIS221-X is a prototype CMOS image sensor, optimised for soft X-ray astronomy and developed for the proposed ESA THESEUS mission. The sensor features 40 $\mu$m pixels built on a 35 $\mu$m thick, high-resistivity epitaxial silicon that is fully depleted by reverse substrate bias. A comprehensive electro-optical characterisation of CIS221-X has been completed. When cooled to -40 °C, the image...
The increase of the particle flux (pile-up) at the HL-LHC with instantaneous luminosities up to L ≃ 7.5 × 1034 cm−2s−1 will have a severe impact on the ATLAS detector reconstruction and trigger performance. The end-cap and forward region where the liquid Argon calorimeter has coarser granularity and the inner tracker has poorer momentum resolution will be particularly affected. A High...
The High Granularity Timing Detector (HGTD) is designed for the mitigation of pile-up effects in the ATLAS forward region and for bunch per bunch luminosity measurements. HGTD, based on Low Gain Avalanche Detector (LGAD) technology and covering the pseudorapidity region between 2.4 and 4.0, will provide high precision timing information to distinguish between collisions occurring close in...
We present an in-depth investigation of the inter-pad (IP) gap region in the Ultra Fast Silicon Detector (UFSD) Type 10, utilizing a femtosecond laser beam and the transient current technique (TCT) as probing instruments. The sensor, fabricated in the TI-LGAD RD50 production batch at FBK Foundry, enables a direct comparison between TI-LGAD and standard UFSD structures. This research aims to...
Devices with internal gain, such as Low Gain Avalanche Diodes (LGADs) demonstrate O(30) ps timing resolution, and they play a crucial role in High Energy Physics (HEP) experiment. Similarly, resistive silicon devices, such as AC-coupled LGADs (AC-LGADs) sensors achieve a fine spatial resolution while maintaining the LGAD’s timing resolution. Devices of both types, with varying gain-layer...
The CMOS Sensor MIMOSIS is being designed to equip the Micro Vertex Detector (MVD) of the CBM experiment at FAIR in Darmstadt, Germany. It will feature 1024 × 504 pixels with 27 x 30µm pitch and combine a time resolution of 5 µs with a spatial resolution of ∼ 5 µm. Moreover, it will have to handle a peak rate of 80 MHz/cm² and radiation doses of 5 MRad and up to $10^{14}~ \mathrm{n_{eq}/cm²}$...
The velocity spectrum of ultracold neutrons (UCN) is an important factor in characterizing a UCN source and in determining the systematic effects in precision measurements utilizing UCNs, most prominently the search for an electric dipole moment of the neutron [1]. The oscillating ultra-cold neutron spectrometer (OTUS) [2] is a new tool designed for monitoring the velocity distribution and its...
Neutron sources are currently becoming standard tools to investigate the structures of various materials using elastic scattering techniques, which are applied across a wide spectrum of scientific disciplines such as physics, biology, materials science. Moreover, typical neutron physics experiments carried out at Neutron Spallation Sources and other laboratories make use of large arrays of...
As one of the ideal probes to detect the structure and dynamics behavior of matters, neutron scattering has been widely used in condensed matter physics, chemistry, life science, medicine, material science, aviation and national defense construction and many other fields. With the completion and operation of China Spallation Neutron Source (CSNS), a large number of neutron scattering...
A dose monitoring system is crucial for protecting workers from overexposure to neutrons and gamma rays in the neutron utilization facilities and decommissioning of nuclear power plants. Traditional passive dosimeters have been widely used to measure both radiation types simultaneously. However, these dosimeters are incapable of real-time dose estimation and detecting hotspot locations. A...
We presents the findings of a study investigating the impact of single and multiple trenches employed as isolation structures in Trench Low-Gain Avalanche Detectors (TI-LGADs). The focus of this study is to analyze the collection of charge induced by fs-laser at various shooting points along the X-axis and compare the deduced X-profiles derived from the recorded waveform data.
The results...
Hydrogenated amorphous silicon (a-Si:H) is a material with an excellent radiation hardness and with the possibility of deposition on flexible substrates like Polyimide (PI). Exploiting these properties, the HASPIDE (Hydrogenated Amorphous Silicon PIxels DEtectors) project has the goal of developing a-Si:H detectors on flexible substrates for beam dosimetry and profile monitoring, neutron...
Low Gain Avalanche Diodes (LGADs) represent the state-of-the-art in timing measurements, and will instrument the future Timing Detectors of ATLAS and CMS for the High-Luminosity LHC. While initially conceived as a sensor for charged particles, the intrinsic gain of LGADs makes it possible to detect low energy X-rays with good energy resolution and excellent timing (tens of picoseconds). Using...
High Voltage-CMOS (HV-CMOS) sensors are gaining steam as a capable, radiation tolerant, and cost effective solution for silicon based detectors in current and future experiments. These devices can be biased to high voltage, for radiation tolerance, and due to their monolithic nature they can also meet a low material budget. Additionally, they do not require external processing, such as...
Starting this autumn, the Swiss Light Source is undergoing an upgrade to a diffraction limited light source and with this the coherent flux will increase with up to two orders of magnitude. This poses a huge challenge for single photon counting detectors which despite being incredibly successful still suffers from pulse pile-up at high rates. In this talk we present our strategy for single...
Pixelated silicon sensors are the most precise detector for charged particle tracking currently in use at high-energy physics experiments. Located closely to the interaction point, they are required to function in a radiation harsh environment. It is hence necessary for such sensors to demonstrate an increased radiation tolerance as well as to maintain a good performance in high beam...
In the rapidly evolving field of semiconductor detector device design and performance prediction, computer-aided simulations play a crucial role. Various research institutions worldwide have developed simulation software and packages for semiconductor detectors, such as WeightField2, AllpixSquared, and TRACS, to address different software development requirements and computational performance...
We present a design project for a muon tomography detector aiming to the monitoring of glacier thickness. The glacier melting process is not completely understood and is considered a hot topic in view of the global warming.
Muon Tomography is a widely used technique, employed to perform imaging of the inner structure of large objects, as volcanoes, container, and pyramids. This technique...
Xray Free Electron Lasers (XFELs) produce extremely high intensity pulses of photons with ultrashort duration. Planned upgrades to these facilities will increase photon energies above 20keV as well as increasing pulse repetition rates to greater than 1MHz. At these energies silicon has poor quantum efficiency and is susceptible to radiation damage, so new detector materials must be used....
High-Speed Data Transmission and Serial Powering IP’s in 65nm CMOS Image Sensor Process at the Electron Ion Collider
Soniya Mathew(1), Iain Sedgwick(1), Nicola Guerrini(1), Marcello Borri(1), Andrew Hill(1), William Helsby(1), Laura Gonella(2), James Glover(2)
1 Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus, OX11 0QX, United Kingdom
2 School...
The advent of diffraction limited storage ring synchrotron facilities is pushing the requirements of X-ray detectors into a new regime. The Diamond II synchrotron will deliver X-ray fluxes ~10$^{12}$ ph/mm$^2$/s at the detector for some experiments. At such high fluxes the photons arrive at such a rate that conventional photon counting detectors are unable to make accurate measurements....
The position resolution of the novel p-type Segmented Inverted-Coaxial Germanium (SIGMA) detector was investigated using the Pulse Shape Analysis (PSA) technique. The design of this large volume HPGe detector is based on a coaxial geometry and combines the small point contact technology along with the segmentation of the outer contact. The location of the γ-ray interaction points is determined...
Silicon strip detectors play a central role in applied nuclear physics thanks to the high channel density and almost 100% detection efficiency. In particular, double-sided silicon strip detector (DSSSD) enable very accurate 2D position sensing. Their principle of operation is straightforward, but the full exploitation of their potential requires many independent readout channels
In this work...
The majority of neutron spectrometers designated for use in the China Spallation Neutron Source (CSNS) rely on position-sensitive detectors that utilize Helium-3 tube technology. To minimize the impact of air on neutron scattering experiments, these detectors must be located inside a vacuum chamber. For these types of spectrometers, it is also advisable to house the readout electronics within...
We developed a phoswich imaging detector that can simultaneously but independently acquire images of neutrons and gamma photons. The developed neutron imaging system consists of a lithium-containing silver doped zinc sulfide (Li-ZnS(Ag)) plate stacked on a cerium doped yttrium aluminum perovskite (YAP(Ce)) plate to form a phoswich detector, which is optically coupled to a position sensitive...
The proven radiation hardness of silicon 3D devices up to fluences of $1 \times 10^{17}\;n_{eq}/cm^{2}$ makes them an excellent choice for next generation trackers, providing $<10\;\mu m$ position resolution at a high multiplicity environment. The anticipated pile-up increase at HL-LHC conditions and beyond, requires the addition of < 50 ps per hit timing information to successfully resolve...
As nuclear and particle physics facilities move to higher intensities, the detectors used there must be more radiation tolerant. Diamond is in use at many facilities due to its inherent radiation tolerance and ease of use. We will present radiation tolerance measurements of the highest quality poly-crystalline Chemical Vapor Deposition (pCVD) diamond material for irradiations from a range of...
Signal reduction is the most important radiation damage effect on performance
of silicon tracking detectors in ATLAS. Adjusting sensor bias voltage and
detection threshold can help in mitigating the effects but it
is important to have simulated data that reproduce the evolution of
performance with the accumulation of luminosity, hence fluence.
ATLAS collaboration developed and implemented...
The European Organization for Nuclear Research (CERN) is planing a major update of the accelerator to HL-LHC and future hadron collider. These major upgrades give higher radiation doses to detectors, and degradation of semiconductor properties will be more serious problem. $\rm Cu(In_{x},Ga_{1-x})Se_2$ (CIGS) is attracting attention a new semiconductor material that can be used for long-term...
Water Cherenkov detectors for wide-field gamma-ray astronomy, such as HAWC and LHASSO and the upcoming Southern Wide-Field Gamma-Ray Observatory (SWGO) utilize a large number of water tanks at high altitudes to directly detect the gamma-ray-produced charged particle shower via the Cherenkov radiation generated within each tank. SWGO will be the first such wide-field survey instrument to...
The HEXITEC 2×6 Instrument was developed for the National X-ray CT (NXCT) Centre’s Colour X-ray bay at the University of Manchester. A single HEXITEC ASIC is typically bonded to a 2×2cm CdZnTe, CdTe or other High-Z material and readout by the HEXITEC GigE system. However, with an increasing demand for large area high energy detectors we have employed the use of tiled arrays of 2×6 ASICs. The...
Sensors and structures of many different kinds can absorb energy through a number of spatial degrees of freedom simultaneously. For example, the ultra-low-noise detectors being developed for far-infrared space telescopes can absorb energy through typically 1-20 optical modes. An important question is how to match the amplitude and phase patterns of the incoming partially coherent field to...
Compton imaging is an important gamma-ray imaging method with wide-band energy measurement and large field-of-view in medical, astrophysics and environmental applications. One of the drawbacks of Compton imaging is its low signal to noise ratio (SNR) and electron tracking of Compton recoil electrons may help to improve SNR to limit the Compton cones to Compton arc. We have designed and...
Compton imaging can visualize a radioactive source visualization without any mechanical collimators based on the Compton scattering kinematics. The conventional imaging method confines the source location only on a conical surface with a calculated scattered angle from the energy depositions and interaction positions in a scatterer and an absorber. However, Compton cones causes an artifact in...
Low Gain Avalanche Diode (LGAD) has high-precision time performance, and the time resolution can reach 30 ps. The LGAD with a size of 1.3 mm
× 1.3 mm was used for the upgrade of ATLAS and CMS time detectors to reduce the pile-up effect of High-Luminosity Large Hadron Collider (HL-LHC). Institute of High Energy Physics (IHEP, CAS) has designed a LGAD strip detector, which can be used as a...
Recently X-ray photon counting detectors (PCDs) with energy discrimination capabilities based on pulse height analysis have been developed for medical X-ray imaging with substantially improving signal-to-noise and overall performance when compared to the conventional energy integrating detectors (EIDs) that comprising the majority of CT scanners. PCDs for medical X-ray CT require extremely...
For the planned future upgrades of several high energy physics experiments, highly performing position sensitive photodetectors are needed. In ring imaging Cherenkov counters, planned for the upgrades of LHCb and Belle II experiments, detection of single photons with position resolutions a good as 1 mm will be required, with timing resolution on the order of 100 ps and surface coverage of...
Resistive plate chamber (RPC) detectors in the Compact Muon Solenoid (CMS) operate with a gas mixture made of 95.2% $C_2H_2F_4$ (providing a high number of ion-electron pairs), 4.5% $iC_4H_{10}$ (ensuring the suppression of photon-feedback effects), and 0.3% $SF_6$ (used as an electron quencher to further operate the detector in streamer-free mode). $C_2H_2F_4$ is known to be a greenhouse gas...
The HEXITEC$_{MHz}$ detector system is the latest generation of the STFC’s HEXITEC spectroscopic X-ray imaging detector systems. When coupled to Cd(Zn)Te sensor material, the original HEXITEC system delivers high-resolution X-ray spectroscopy (50 electrons RMS) per 250 μm pitch pixel for hard X-rays with energies 2 - 200 keV. However, a 9.1 kHz frame rate and the need to identify...
The future development of High Energy Particle physics in the post High Luminosity LHC era could greatly benefit from a Multi-TeV muon collider, which stands as one of the most promising options. This machine would enable leptonic collisions at high center-of-mass energy, creating opportunities for a wide range of unexplored physics studies. However, designing an appropriate detection system...
The Extreme Photonics Applications Centre (EPAC) at the STFC-Rutherford Appleton Laboratory will be a new facility utilising high intensity laser plasma interactions (LPI) for the generation of ultra-short pulses of ionising radiation. LPI drive sub-picosecond sources of radiation, emitting from an interaction point in the range of 100 nm – 100 µm, allowing for high resolution X-ray imaging....
The European XFEL is a state-of-the-art research facility capable of producing both soft and hard X-rays with an unprecedented brightness, pulse duration and coherence. It delivers up to 2700 X-ray pulses with 220 ns interspacing, enabling operation at a maximum frame rate of 4.5 MHz. These unique temporal characteristics of XFEL empower scientists to conduct time-resolved experiments in...
The 100µPET project, led by the University of Geneva, the University of Luzern, and the École Polytechnique Fédérale de Lausanne, aims at the development of a small-animal positron-emission tomography (PET) scanner with ultra-high-resolution molecular imaging capabilities. This is achieved through the use of a compact, modular stack of multiple thin layers of monolithic pixel detectors and...
The gold standard technique for preoperative parathyroid localisation is 99mTc-Sestamibi/123I dual-isotope parathyroid imaging. This technique subtracts 123I uptake in normal tissue from 99mTc-Sestamibi imaging to reveal parathyroid glands which would otherwise be obscured by the thyroid. Due to the difficulty of interpreting preoperative images within the surgical environment, the translation...
Background. Single ion counting in particle therapy may lead to new beam monitoring systems much faster and accurate than those currently used in clinics, thus opening the way to innovative delivery strategies. Thin silicon PIN sensors (60 μm active thickness) segmented in strips, manufactured at FBK with different geometries, were optimized for tracking of clinical carbon ions. The...
To sustain the five-fold increase in instantaneous luminosity of the High-Luminosity phase of the LHC, the ATLAS experiment will replace its current Inner Detector with a new all-silicon tracker detector. The Inner Tracker (ITk) will consist of an inner silicon pixel detector, surrounded by layers of silicon microstrip sensors. The production phase of the ITk is starting during the year 2023....
The High Luminosity LHC (HL-LHC) requires the CMS detector to undergo a major Phase-2 upgrade, which involves the complete replacement of current tracker. The new tracker will be divided into two main parts: inner tracker and outer tracker. The Phase-2 outer tracker will employ two types of silicon modules, 2S and PS, based on a novel pT discrimination concept. These modules aim to reduce...
The High Luminosity upgrade of Large Hadron Collider (HL-LHC) will increase the LHC Luminosity and with it the density of particles on the detector by an order of magnitude. For protecting the inner silicon detectors of the ATLAS experiment and for monitoring the delivered luminosity, a radiation hard beam monitor has been developed. We developed a set of detectors based on polycrystalline...
The MONOLITH H2020 ERC Advanced project aims at producing a monolithic silicon pixel ASIC with 50µm pixel pitch and picosecond-level time stamping. The two main ingredients of the project are fast and low-noise SiGe BiCMOS electronics and a novel sensor concept, the Picosecond Avalanche Detector (PicoAD). The PicoAD uses a patented multi-PN junction to engineer the electric field and produce a...
The current ATLAS Inner Detector will undergo a complete upgrade in order to meet the requirements of the High Luminosity Large Hadron Collider (HL-LHC). The new Inner Tracker (ITk) will be made completely of silicon sensors fabricated by Hamamatsu Photonics K.K. (HPK). Quality Assurance (QA) is focused on providing confidence that quality requirements will be fulfilled in production such as...
The new Inner Tracker of the ATLAS experiment will be installed during LHC Long Shutdown 3 and will consist of a pixel and strip detector. The Outer Barrel, comprising three central outer pixel layers, will be constructed using a combination of flat sections called longerons and inclined half-rings. Silicon modules will be mounted on these structures with good thermal contact and powered in...
The Super-KEKB collider will undergo a major upgrade to reach the target luminosity of 6 10^35 cm-2 s-1. A long shutdown is foreseen around year 2027, which provides the opportunity to revisit significant parts of the Belle II experiment and adapt them to the expected change of the experimental conditions. In particular, a new pixelated vertex detector (VTX) is being designed to fit the...
Ultra-fast silicon detectors (UFSD) are a specialized type of radiation detectors based on Low Gain Avalanche Detectors (LGADs) that are designed to have extremely fast response times, typically in the range of picoseconds or even femtoseconds. The exceptional temporal resolution of UFSD enables the precise determination of the particle arrival time and helps disentangle overlapping collision...
In order to meet the physics goals of the forthcoming high luminosity (HL) era of the CERN Large Hadron Collider (LHC), the inner detector of the ATLAS experiment will be replaced by a new all-silicon tracking system, known as the inner tracker (ITk). The outer region of the ITk is instrumented with 22,000 n^+-in-p type silicon strip sensors manufactured by Hamamatsu Photonics...
The ALICE experiment of the Large Hadron Collider (LHC) at CERN has planned an upgrade of the Inner Tracking System (ITS), called ITS3, for the LHC Long Shutdown 3, in 2025. The cornerstone of the upgrade is a new CMOS-65 nm pixel chip, built using Monolithic Active Pixel Sensor (MAPS) technology using the stitching technology to extend the chip length to 26 cm and bent around the beam pipe,...
Summary (Max 500 words)
ATLAS innermost detector layer will undergo a broad range of upgrades for the HL-LHC phase. To be able to cope with the new detector design and a large set of modules to be integrated on the ITk, a demonstrator-based project at SR1 facility in CERN is conducted, to test and integrate a large number of Pixel modules equipped with RD53a electronics.
To mimic the ITk...
In order to fully exploit the High-Luminosity LHC potential in flavour physics, the LHCb collaboration proposes a Phase-II Upgrade of the detector, to be installed during the LHC Long Shutdown 4 (2032-2034). Operating in the HL-LHC environment poses significant challenges to the design of the upgraded detector, and in particular to its tracking system. The primary and secondary vertices...
After ten years of massive success, the Large Hadron Collider (LHC) at CERN is going for an upgrade to the next phase, the High Luminosity Large Hadron Collider (HL-LHC) which is planned to start its operation in 2029. This is expected to have a fine boost to its performance, with an instantaneous luminosity of 5.0×1034 cm-2 s -1 (ultimate value 7.5×1034 cm-2 s -1) with 200 average...
Monolithic CMOS Pixel Sensor (CPS) is one of the promising candidates for the Circular Electron Positron Collider (CEPC) Vertex detector, due to its good performance and trade-off of granularity, readout speed, material budgets and power consumption. A full-scale TaichuPix chip, including a matrix of 512 × 1024 pixels with a size of 25 × 25 μm2 is developed to provide a spatial resolution...
For precise distribution measurements of alpha particles such as those required in alpha radionuclide therapy research, a high-resolution alpha particle camera is desired. Although combining a thin scintillator with a photodetector such as position sensitive photomultiplier (PSPMT) or silicon photomultiplier (Si-PM) array is a possible method to develop an event-by-event based alpha camera,...
Background. FLASH Radiotherapy (RT) delivers an average dose-rate > 40 Gy/s in less than 200 ms with extremely high instantaneous dose-rates, and preclinical studies demonstrated a tumoricidal effect comparable to conventional RT with an increased sparing effect on healthy tissues (FLASH effect). Real-time monitoring of FLASH beams is challenging, but crucial for studying the delivery...
Some medical and industrial X-ray imaging applications need to reconstruct an image on a flexible surface, so they use photographic film rather than electronic detectors. Current flat-panel X-ray imaging detectors are difficult to adapt to these applications. We will present the FleX-RAY project, which aims to create an electronic X-ray detector with the flexibility of photographic film,...
The Phase-2 upgrades of ATLAS and CMS will require a new tracker with readout electronics operating in extremely harsh radiation environment (1 Grad), high hit rate ( 3GHz/cm2) and high data rate readout (5 Gb/s).
The RD53 collaboration is a joint effort between the ATLAS and CMS experiments, established in 2013 and extended in 2018, to qualify the chosen 65nm CMOS technology and develop the...
The tracking performance of the ATLAS detector relies critically on its 4-layer Pixel Detector. As the closest detector component to the interaction point, this detector is subjected to a significant amount of radiation over its lifetime. At the start of the LHC proton-proton collision RUN3 in 2022, the innermost layer IBL, consisting of planar and 3D pixel sensors, had received an integrated...
ATLAS-ITK Strip Collaboration
(the speaker to be selected by the ITk Speakers Committee after the contribution acceptance)
The inner detector of the present ATLAS experiment has been designed and developed to function in the environment of the present Large Hadron Collider (LHC). At the ATLAS Phase-II Upgrade, the particle densities and radiation levels will exceed current levels by a factor...
The FASER experiment at the LHC will be instrumented with a high precision W-Si preshower to identify and reconstruct electromagnetic showers produced by two O(TeV) photons at distances down to 200µm. The new detector features a monolithic silicon ASIC with hexagonal pixels of 100 µm pitch, extended dynamic range for the charge measurement and capability to store the charge information for...
Silicon tracking detectors are by now the standard for the inner tracking layers of most collider physics experiments. A promising technology for future silicon particle detectors is CMOS sensor. One issue with CMOS sensors is the limited size of the reticules around 4cm$^2$ used, which is adapted to the typical ASIC sizes in industrial applications but far too small for the 100cm$^2$ sensors...
The performance of monolithic CMOS pixel sensors depends on their fabrication process and especially the feature size which directly drives the pixel size. A consortium led by the CERN EP R&D program, the ALICE experiment and various European projects (AIDAinnova, EURIZON) is investigating the benefits of a 65 nm CMOS imager process to design a new generation of pixel sensors. These...
The proposed Circular Electron Positron Collider (CEPC) presents new challenges for the vertex detector in terms of material budget, spatial resolution, readout speed, and power consumption. To address these challenges, a Monolithic Active Pixel Sensor (MAPS) prototype called TaichuPix has been implemented, which is based on a column drain readout architecture. The TaichuPix sensor chip has...
AC-coupled Low- Gain Avalanche Detectors (AC-LGAD) are designed as detectors with 100% fill factor for high precision 4D-tracking, which have been studied and researched by many institutes including BNL、FBK et al. Institute of High Energy Physics (IHEP) has also done many researches on AC-LGAD. First IHEP AC-LGAD sensors with a pitch of 2000 µm and AC pad of 1000 µ show time resolution better...
The LUXE experiment aims at studying high-field QED in electron-laser and photon-laser interactions, with the 16.5 GeV electron beam of the European XFEL and a laser beam with power of up to 350 TW. The experiment will measure the spectra of electrons, positrons and photons in expected ranges of 10−3 to 109 per 1 Hz bunch crossing, depending on the laser power and focus. These measurements...
Testing to see how we can accept types on review
You have received this test abstract submission during a live test. Thank you for taking part ;-)
Analyzing neutron scattering and diffraction is currently the best way to probe the microstructure and dynamic properties of materials. The China Spallation Neutron Source (CSNS) is a large scientific facility whose main aim is to support multidisciplinary research on material characterization using neutron scattering. It has been running steadily with four neutron instruments from March,2018....