Focus on:
All days
Jul 17, 2023
Jul 18, 2023
Jul 19, 2023
Jul 20, 2023
Jul 21, 2023
All sessions
Closing Session
Morning Session
Morning Session
Hide Contributions
Compact style
Indico style
Indico style - inline minutes
Indico style - numbered
Indico style - numbered + minutes
Indico Weeks View
Back to Conference View
Choose Timezone
Use the event/category timezone
Specify a timezone
Africa/Abidjan
Africa/Accra
Africa/Addis_Ababa
Africa/Algiers
Africa/Asmara
Africa/Bamako
Africa/Bangui
Africa/Banjul
Africa/Bissau
Africa/Blantyre
Africa/Brazzaville
Africa/Bujumbura
Africa/Cairo
Africa/Casablanca
Africa/Ceuta
Africa/Conakry
Africa/Dakar
Africa/Dar_es_Salaam
Africa/Djibouti
Africa/Douala
Africa/El_Aaiun
Africa/Freetown
Africa/Gaborone
Africa/Harare
Africa/Johannesburg
Africa/Juba
Africa/Kampala
Africa/Khartoum
Africa/Kigali
Africa/Kinshasa
Africa/Lagos
Africa/Libreville
Africa/Lome
Africa/Luanda
Africa/Lubumbashi
Africa/Lusaka
Africa/Malabo
Africa/Maputo
Africa/Maseru
Africa/Mbabane
Africa/Mogadishu
Africa/Monrovia
Africa/Nairobi
Africa/Ndjamena
Africa/Niamey
Africa/Nouakchott
Africa/Ouagadougou
Africa/Porto-Novo
Africa/Sao_Tome
Africa/Tripoli
Africa/Tunis
Africa/Windhoek
America/Adak
America/Anchorage
America/Anguilla
America/Antigua
America/Araguaina
America/Argentina/Buenos_Aires
America/Argentina/Catamarca
America/Argentina/Cordoba
America/Argentina/Jujuy
America/Argentina/La_Rioja
America/Argentina/Mendoza
America/Argentina/Rio_Gallegos
America/Argentina/Salta
America/Argentina/San_Juan
America/Argentina/San_Luis
America/Argentina/Tucuman
America/Argentina/Ushuaia
America/Aruba
America/Asuncion
America/Atikokan
America/Bahia
America/Bahia_Banderas
America/Barbados
America/Belem
America/Belize
America/Blanc-Sablon
America/Boa_Vista
America/Bogota
America/Boise
America/Cambridge_Bay
America/Campo_Grande
America/Cancun
America/Caracas
America/Cayenne
America/Cayman
America/Chicago
America/Chihuahua
America/Ciudad_Juarez
America/Costa_Rica
America/Creston
America/Cuiaba
America/Curacao
America/Danmarkshavn
America/Dawson
America/Dawson_Creek
America/Denver
America/Detroit
America/Dominica
America/Edmonton
America/Eirunepe
America/El_Salvador
America/Fort_Nelson
America/Fortaleza
America/Glace_Bay
America/Goose_Bay
America/Grand_Turk
America/Grenada
America/Guadeloupe
America/Guatemala
America/Guayaquil
America/Guyana
America/Halifax
America/Havana
America/Hermosillo
America/Indiana/Indianapolis
America/Indiana/Knox
America/Indiana/Marengo
America/Indiana/Petersburg
America/Indiana/Tell_City
America/Indiana/Vevay
America/Indiana/Vincennes
America/Indiana/Winamac
America/Inuvik
America/Iqaluit
America/Jamaica
America/Juneau
America/Kentucky/Louisville
America/Kentucky/Monticello
America/Kralendijk
America/La_Paz
America/Lima
America/Los_Angeles
America/Lower_Princes
America/Maceio
America/Managua
America/Manaus
America/Marigot
America/Martinique
America/Matamoros
America/Mazatlan
America/Menominee
America/Merida
America/Metlakatla
America/Mexico_City
America/Miquelon
America/Moncton
America/Monterrey
America/Montevideo
America/Montserrat
America/Nassau
America/New_York
America/Nome
America/Noronha
America/North_Dakota/Beulah
America/North_Dakota/Center
America/North_Dakota/New_Salem
America/Nuuk
America/Ojinaga
America/Panama
America/Paramaribo
America/Phoenix
America/Port-au-Prince
America/Port_of_Spain
America/Porto_Velho
America/Puerto_Rico
America/Punta_Arenas
America/Rankin_Inlet
America/Recife
America/Regina
America/Resolute
America/Rio_Branco
America/Santarem
America/Santiago
America/Santo_Domingo
America/Sao_Paulo
America/Scoresbysund
America/Sitka
America/St_Barthelemy
America/St_Johns
America/St_Kitts
America/St_Lucia
America/St_Thomas
America/St_Vincent
America/Swift_Current
America/Tegucigalpa
America/Thule
America/Tijuana
America/Toronto
America/Tortola
America/Vancouver
America/Whitehorse
America/Winnipeg
America/Yakutat
Antarctica/Casey
Antarctica/Davis
Antarctica/DumontDUrville
Antarctica/Macquarie
Antarctica/Mawson
Antarctica/McMurdo
Antarctica/Palmer
Antarctica/Rothera
Antarctica/Syowa
Antarctica/Troll
Antarctica/Vostok
Arctic/Longyearbyen
Asia/Aden
Asia/Almaty
Asia/Amman
Asia/Anadyr
Asia/Aqtau
Asia/Aqtobe
Asia/Ashgabat
Asia/Atyrau
Asia/Baghdad
Asia/Bahrain
Asia/Baku
Asia/Bangkok
Asia/Barnaul
Asia/Beirut
Asia/Bishkek
Asia/Brunei
Asia/Chita
Asia/Choibalsan
Asia/Colombo
Asia/Damascus
Asia/Dhaka
Asia/Dili
Asia/Dubai
Asia/Dushanbe
Asia/Famagusta
Asia/Gaza
Asia/Hebron
Asia/Ho_Chi_Minh
Asia/Hong_Kong
Asia/Hovd
Asia/Irkutsk
Asia/Jakarta
Asia/Jayapura
Asia/Jerusalem
Asia/Kabul
Asia/Kamchatka
Asia/Karachi
Asia/Kathmandu
Asia/Khandyga
Asia/Kolkata
Asia/Krasnoyarsk
Asia/Kuala_Lumpur
Asia/Kuching
Asia/Kuwait
Asia/Macau
Asia/Magadan
Asia/Makassar
Asia/Manila
Asia/Muscat
Asia/Nicosia
Asia/Novokuznetsk
Asia/Novosibirsk
Asia/Omsk
Asia/Oral
Asia/Phnom_Penh
Asia/Pontianak
Asia/Pyongyang
Asia/Qatar
Asia/Qostanay
Asia/Qyzylorda
Asia/Riyadh
Asia/Sakhalin
Asia/Samarkand
Asia/Seoul
Asia/Shanghai
Asia/Singapore
Asia/Srednekolymsk
Asia/Taipei
Asia/Tashkent
Asia/Tbilisi
Asia/Tehran
Asia/Thimphu
Asia/Tokyo
Asia/Tomsk
Asia/Ulaanbaatar
Asia/Urumqi
Asia/Ust-Nera
Asia/Vientiane
Asia/Vladivostok
Asia/Yakutsk
Asia/Yangon
Asia/Yekaterinburg
Asia/Yerevan
Atlantic/Azores
Atlantic/Bermuda
Atlantic/Canary
Atlantic/Cape_Verde
Atlantic/Faroe
Atlantic/Madeira
Atlantic/Reykjavik
Atlantic/South_Georgia
Atlantic/St_Helena
Atlantic/Stanley
Australia/Adelaide
Australia/Brisbane
Australia/Broken_Hill
Australia/Darwin
Australia/Eucla
Australia/Hobart
Australia/Lindeman
Australia/Lord_Howe
Australia/Melbourne
Australia/Perth
Australia/Sydney
Canada/Atlantic
Canada/Central
Canada/Eastern
Canada/Mountain
Canada/Newfoundland
Canada/Pacific
Europe/Amsterdam
Europe/Andorra
Europe/Astrakhan
Europe/Athens
Europe/Belgrade
Europe/Berlin
Europe/Bratislava
Europe/Brussels
Europe/Bucharest
Europe/Budapest
Europe/Busingen
Europe/Chisinau
Europe/Copenhagen
Europe/Dublin
Europe/Gibraltar
Europe/Guernsey
Europe/Helsinki
Europe/Isle_of_Man
Europe/Istanbul
Europe/Jersey
Europe/Kaliningrad
Europe/Kirov
Europe/Kyiv
Europe/Lisbon
Europe/Ljubljana
Europe/London
Europe/Luxembourg
Europe/Madrid
Europe/Malta
Europe/Mariehamn
Europe/Minsk
Europe/Monaco
Europe/Moscow
Europe/Oslo
Europe/Paris
Europe/Podgorica
Europe/Prague
Europe/Riga
Europe/Rome
Europe/Samara
Europe/San_Marino
Europe/Sarajevo
Europe/Saratov
Europe/Simferopol
Europe/Skopje
Europe/Sofia
Europe/Stockholm
Europe/Tallinn
Europe/Tirane
Europe/Ulyanovsk
Europe/Vaduz
Europe/Vatican
Europe/Vienna
Europe/Vilnius
Europe/Volgograd
Europe/Warsaw
Europe/Zagreb
Europe/Zurich
GMT
Indian/Antananarivo
Indian/Chagos
Indian/Christmas
Indian/Cocos
Indian/Comoro
Indian/Kerguelen
Indian/Mahe
Indian/Maldives
Indian/Mauritius
Indian/Mayotte
Indian/Reunion
Pacific/Apia
Pacific/Auckland
Pacific/Bougainville
Pacific/Chatham
Pacific/Chuuk
Pacific/Easter
Pacific/Efate
Pacific/Fakaofo
Pacific/Fiji
Pacific/Funafuti
Pacific/Galapagos
Pacific/Gambier
Pacific/Guadalcanal
Pacific/Guam
Pacific/Honolulu
Pacific/Kanton
Pacific/Kiritimati
Pacific/Kosrae
Pacific/Kwajalein
Pacific/Majuro
Pacific/Marquesas
Pacific/Midway
Pacific/Nauru
Pacific/Niue
Pacific/Norfolk
Pacific/Noumea
Pacific/Pago_Pago
Pacific/Palau
Pacific/Pitcairn
Pacific/Pohnpei
Pacific/Port_Moresby
Pacific/Rarotonga
Pacific/Saipan
Pacific/Tahiti
Pacific/Tarawa
Pacific/Tongatapu
Pacific/Wake
Pacific/Wallis
US/Alaska
US/Arizona
US/Central
US/Eastern
US/Hawaii
US/Mountain
US/Pacific
UTC
Save
US/Eastern
English (United States)
Deutsch (Deutschland)
English (United Kingdom)
English (United States)
Español (España)
Français (France)
Italiano (Italia)
Polski (Polska)
Português (Brasil)
Türkçe (Türkiye)
Čeština (Česko)
Монгол (Монгол)
Українська (Україна)
中文 (中国)
Login
Fifth Computational and Data Science school for HEP (CoDaS-HEP 2023)
from
Monday, July 17, 2023 (8:30 AM)
to
Friday, July 21, 2023 (1:00 PM)
Monday, July 17, 2023
8:30 AM
Breakfast
Breakfast
8:30 AM - 9:00 AM
Room: 407 Jadwin Hall
9:00 AM
Welcome and Overview
-
Peter Elmer
(
Princeton University (US)
)
Welcome and Overview
Peter Elmer
(
Princeton University (US)
)
9:00 AM - 9:10 AM
Room: 407 Jadwin Hall
9:10 AM
Collaborative Software Development with Git(Hub)
-
Kilian Lieret
(
Princeton University
)
Collaborative Software Development with Git(Hub)
Kilian Lieret
(
Princeton University
)
9:10 AM - 10:30 AM
Room: 407 Jadwin Hall
Git is perhaps the single biggest denominator among all software developers, regardless of field or programming language. It serves not only as a version control system but as the backbone of all collaborative software development. This session aims to be 100% hands-on and at least 90% collaborative. We will exclusively work in the browser, using GitHub and GitHub codespaces. Learn forking, branching, opening pull requests, handling merge requests, and more. GitHub account required.
10:30 AM
Coffee Break
Coffee Break
10:30 AM - 11:00 AM
Room: 407 Jadwin Hall
11:00 AM
What Every Computational Physicist Should Know About Computer Architecture
-
Steven R Lantz
(
Cornell University (US)
)
What Every Computational Physicist Should Know About Computer Architecture
Steven R Lantz
(
Cornell University (US)
)
11:00 AM - 11:45 AM
Room: 407 Jadwin Hall
These days, everyone in physics in a computational physicist in one way or another. Experiments, theory, and (obviously) simulations all rely heavily on computers. Isn't it time you got to know them better? Computer architecture is an interesting study in its own right, and how well one understands and uses the capabilities of today's systems can have real implications for how fast your computational work gets done. Let's dig in, learn some terminology, and find out what's in there.
11:45 AM
Vector Parallelism on Multi-Core Processors
-
Steven R Lantz
(
Cornell University (US)
)
Vector Parallelism on Multi-Core Processors
Steven R Lantz
(
Cornell University (US)
)
11:45 AM - 12:30 PM
Room: 407 Jadwin Hall
All modern CPUs boost their performance through vector processing units (VPUs). VPUs are activated through special SIMD instructions that load multiple numbers into extra-wide registers and operate on them simultaneously. Intel's latest processors feature a plethora of 512-bit vector registers, as well as 1 or 2 VPUs per core, each of which can operate on 16 floats or 8 doubles in every cycle. Typically these SIMD gains are achieved not by the programmer directly, but by (a) the compiler through automatic vectorization of simple loops in the source code, or (b) function calls to highly vectorized performance libraries. Either way, vectorization is a significant component of parallel performance on CPUs, and to maximize performance, it is important to consider how well one's code is vectorized. We will take a look at vector hardware, then turn to simple code examples that illustrate how compiler-generated vectorization works.
12:30 PM
Lunch
Lunch
12:30 PM - 1:30 PM
Room: 407 Jadwin Hall
1:30 PM
Parallel Programming - An introduction to parallel computing with OpenMP
-
Tim Mattson
(
Intel
)
Parallel Programming - An introduction to parallel computing with OpenMP
Tim Mattson
(
Intel
)
1:30 PM - 3:00 PM
Room: 407 Jadwin Hall
We start with a discussion of the historical roots of parallel computing and how they appear in a modern context. We'll then use OpenMP and a series of hands-on exercises to explore the fundamental concepts behind parallel programming.
3:00 PM
Coffee Break
Coffee Break
3:00 PM - 3:30 PM
Room: 407 Jadwin Hall
3:30 PM
Parallel Programming - The OpenMP Common Core
-
Tim Mattson
(
Intel
)
Parallel Programming - The OpenMP Common Core
Tim Mattson
(
Intel
)
3:30 PM - 5:30 PM
Room: 407 Jadwin Hall
We will explore through hands-on exercises the common core of OpenMP; that is, the features of the API that most OpenMP programmers use in all their parallel programs. This will provide a foundation of understanding you can build on as you explore the more advanced features of OpenMP.
6:00 PM
Welcome Light Reception
Welcome Light Reception
6:00 PM - 7:30 PM
Tuesday, July 18, 2023
8:00 AM
Breakfast
Breakfast
8:00 AM - 8:30 AM
Room: 407 Jadwin Hall
8:30 AM
Parallel Programming - Working with OpenMP
-
Tim Mattson
(
Intel
)
Parallel Programming - Working with OpenMP
Tim Mattson
(
Intel
)
8:30 AM - 10:30 AM
Room: 407 Jadwin Hall
We now know how to work with threads directly and how to parallelize loops with OpenMP directives. Now we move on managing the data environment. Our Hands-on exercises will be much more complicated as we explore how to debug multithreaded programs. Then we move on to task-level parallelism in OpenMP and wrap up with a look at the core design patterns of OpenMP.
10:30 AM
Group Photo - Jadwin Hall plaza
Group Photo - Jadwin Hall plaza
10:30 AM - 10:40 AM
10:40 AM
Coffee Break
Coffee Break
10:40 AM - 11:00 AM
Room: 407 Jadwin Hall
11:00 AM
Parallel Programming - The world beyond OpenMP
-
Tim Mattson
(
Intel
)
Parallel Programming - The world beyond OpenMP
Tim Mattson
(
Intel
)
11:00 AM - 12:30 PM
Room: 407 Jadwin Hall
Parallel programming is hard. There is no way to avoid that reality. We can mitigate these difficulties by focusing on the fundamental design patterns from which most parallel algorithms are constructed. Once mastered, these patterns make it much easier to understand how your problems map onto other parallel programming models. Hence for our last session on parallel programming, we'll review these essential design patterns as seen in OpenMP, and then show how they appear in cluster computing (with MPI) and GPGPU computing (with OpenMP and then a quick survey of other GPGPU languages).
12:30 PM
Lunch
Lunch
12:30 PM - 1:30 PM
Room: 407 Jadwin Hall
1:30 PM
The Scientific Python Ecosystem
-
Henry Fredrick Schreiner
(
Princeton University
)
The Scientific Python Ecosystem
Henry Fredrick Schreiner
(
Princeton University
)
1:30 PM - 3:00 PM
Room: 407 Jadwin Hall
In recent years, Python has become a glue language for scientific computing. Although code written in Python is generally slow, it has a good connection with compiled C code and a common data abstraction through Numpy. Many data processing, statistical, and most machine learning software has a Python interface as a matter of course. This tutorial will introduce you to core Python packages for science, such as NumPy, SciPy, Matplotlib, Pandas, and Numba, (part 1) as well as HEP-specific tools like iminuit, particle, pyjet, and pyhf (part 2). We'll especially focus on accessing ROOT data in uproot and awkward. Part 1 will also cover the Scientific Python Development Guide and a short discussion on packaging.
3:00 PM
Coffee Break
Coffee Break
3:00 PM - 3:30 PM
Room: 407 Jadwin Hall
3:30 PM
The Scientific Python Ecosystem
-
Henry Fredrick Schreiner
(
Princeton University
)
The Scientific Python Ecosystem
Henry Fredrick Schreiner
(
Princeton University
)
3:30 PM - 5:30 PM
Room: 407 Jadwin Hall
Continued from last time. Part 2 focuses on the HEP portion of the ecosystem.
6:30 PM
BBQ and Drinks - Palmer House
BBQ and Drinks - Palmer House
6:30 PM - 9:00 PM
Wednesday, July 19, 2023
8:00 AM
Breakfast
Breakfast
8:00 AM - 8:30 AM
Room: 407 Jadwin Hall
8:30 AM
Floating Point Arithmetic Is Not Real
-
Ianna Osborne
(
Princeton University
)
Floating Point Arithmetic Is Not Real
Ianna Osborne
(
Princeton University
)
8:30 AM - 9:30 AM
Room: 407 Jadwin Hall
9:30 AM
The Use and Abuse of Random Numbers
-
David Lange
(
Princeton University (US)
)
The Use and Abuse of Random Numbers
David Lange
(
Princeton University (US)
)
9:30 AM - 10:30 AM
Room: 407 Jadwin Hall
10:30 AM
Coffee Break
Coffee Break
10:30 AM - 11:00 AM
Room: 407 Jadwin Hall
11:00 AM
Vector Parallelism on Multi-Core Processors (continued)
-
Steven R Lantz
(
Cornell University (US)
)
Vector Parallelism on Multi-Core Processors (continued)
Steven R Lantz
(
Cornell University (US)
)
11:00 AM - 11:30 AM
Room: 407 Jadwin Hall
11:30 AM
Introduction to Performance Tuning & Optimization Tools
-
Steven R Lantz
(
Cornell University (US)
)
Introduction to Performance Tuning & Optimization Tools
Steven R Lantz
(
Cornell University (US)
)
11:30 AM - 12:00 PM
Room: 407 Jadwin Hall
Improving the performance of scientific code is something that is often considered to be an art that is difficult, mysterious, and time-consuming, but it doesn't have to be. Performance tuning and optimization tools can greatly aid in the evaluation and understanding of the performance of scientific code. In this talk we will discuss how to approach performance tuning and introduce some measurement tools to evaluate the performance of compiled-language (C/C++/Fortran) code. Powerful profiling tools, such as Intel VTune and Advisor, will be introduced and discussed.
12:00 PM
Performance Case Study: the mkFit Particle Tracking Code
-
Steven R Lantz
(
Cornell University (US)
)
Performance Case Study: the mkFit Particle Tracking Code
Steven R Lantz
(
Cornell University (US)
)
12:00 PM - 12:30 PM
Room: 407 Jadwin Hall
This is a demo of how to run various analyses with Intel Advisor, to see what they reveal about hotspots in current version of the mkFit particle tracking code; these may represent opportunities for improving the code's performance.
12:30 PM
Lunch
Lunch
12:30 PM - 1:30 PM
Room: 407 Jadwin Hall
1:30 PM
Machine Learning: Introduction to Machine Learning
-
Adrian Alan Pol
(
Princeton University (US)
)
Abhijith Gandrakota
(
Fermi National Accelerator Lab. (US)
)
Machine Learning: Introduction to Machine Learning
Adrian Alan Pol
(
Princeton University (US)
)
Abhijith Gandrakota
(
Fermi National Accelerator Lab. (US)
)
1:30 PM - 3:00 PM
Room: 407 Jadwin Hall
3:00 PM
Coffee Break
Coffee Break
3:00 PM - 3:30 PM
Room: 407 Jadwin Hall
3:30 PM
Machine Learning: Supervised Deep Learning
-
Adrian Alan Pol
(
Princeton University (US)
)
Abhijith Gandrakota
(
Fermi National Accelerator Lab. (US)
)
Machine Learning: Supervised Deep Learning
Adrian Alan Pol
(
Princeton University (US)
)
Abhijith Gandrakota
(
Fermi National Accelerator Lab. (US)
)
3:30 PM - 5:30 PM
Room: 407 Jadwin Hall
6:00 PM
Dinner on your own
Dinner on your own
6:00 PM - 8:00 PM
Thursday, July 20, 2023
8:00 AM
Breakfast
Breakfast
8:00 AM - 8:30 AM
Room: 407 Jadwin Hall
8:30 AM
Machine Learning: Convolutional Neural Networks and Autoencoders
-
Adrian Alan Pol
(
Princeton University (US)
)
Abhijith Gandrakota
(
Fermi National Accelerator Lab. (US)
)
Machine Learning: Convolutional Neural Networks and Autoencoders
Adrian Alan Pol
(
Princeton University (US)
)
Abhijith Gandrakota
(
Fermi National Accelerator Lab. (US)
)
8:30 AM - 10:00 AM
Room: 407 Jadwin Hall
10:00 AM
Coffee Break
Coffee Break
10:00 AM - 10:30 AM
Room: 407 Jadwin Hall
10:30 AM
Machine Learning: Permutation Invarience
-
Abhijith Gandrakota
(
Fermi National Accelerator Lab. (US)
)
Adrian Alan Pol
(
Princeton University (US)
)
Machine Learning: Permutation Invarience
Abhijith Gandrakota
(
Fermi National Accelerator Lab. (US)
)
Adrian Alan Pol
(
Princeton University (US)
)
10:30 AM - 12:30 PM
Room: 407 Jadwin Hall
12:30 PM
Lunch
Lunch
12:30 PM - 1:30 PM
Room: 407 Jadwin Hall
1:30 PM
Columnar Data Analysis
-
Jim Pivarski
(
Princeton University
)
Ioana Ifrim
(
Princeton University (US)
)
Columnar Data Analysis
Jim Pivarski
(
Princeton University
)
Ioana Ifrim
(
Princeton University (US)
)
1:30 PM - 3:00 PM
Room: 407 Jadwin Hall
Data analysis languages, such as Numpy, MATLAB, R, IDL, and ADL, are typically interactive with an array-at-a-time interface. Instead of performing an entire analysis in a single loop, each step in the calculation is a separate pass, letting the user inspect distributions each step of the way. Unfortunately, these languages are limited to primitive data types: mostly numbers and booleans. Variable-length and nested data structures, such as different numbers of particles per event, don't fit this model. Fortunately, the model can be extended. This tutorial will introduce awkward-array, the concepts of columnar data structures, and how to use them in data analysis, such as computing combinatorics (quantities depending on combinations of particles) without any for loops.
3:00 PM
Coffee Break
Coffee Break
3:00 PM - 3:30 PM
Room: 407 Jadwin Hall
3:30 PM
Columnar Data Analysis
-
Ioana Ifrim
(
Princeton University (US)
)
Jim Pivarski
(
Princeton University
)
Columnar Data Analysis
Ioana Ifrim
(
Princeton University (US)
)
Jim Pivarski
(
Princeton University
)
3:30 PM - 5:30 PM
Room: 407 Jadwin Hall
6:00 PM
School Dinner - Frick Atrium and Patio
School Dinner - Frick Atrium and Patio
6:00 PM - 9:00 PM
Friday, July 21, 2023
8:30 AM
Breakfast
Breakfast
8:30 AM - 9:00 AM
Room: 407 Jadwin Hall
9:00 AM
Things you didn't know you needed
-
Henry Fredrick Schreiner
(
Princeton University
)
Kilian Lieret
(
Princeton University
)
Things you didn't know you needed
Henry Fredrick Schreiner
(
Princeton University
)
Kilian Lieret
(
Princeton University
)
9:00 AM - 9:45 AM
Room: 407 Jadwin Hall
9:45 AM
Parallelized Track Reconstruction for the LHC: the mkFit Project
-
Steven R Lantz
(
Cornell University (US)
)
Parallelized Track Reconstruction for the LHC: the mkFit Project
Steven R Lantz
(
Cornell University (US)
)
9:45 AM - 10:30 AM
Room: 407 Jadwin Hall
In this presentation, we consider how a physics application may be restructured to take better advantage of vectorization and multithreading. For vectorization, we focus on the Matriplex concept that is used to implement parallel Kalman filtering in our collaboration's particle tracking R&D project called mkFit. Drastic changes to data structures and loops were required to help the compiler find the SIMD opportunities in the algorithm. For multithreading, we examine how binning detector hits and tracks in an abstraction of the detector geometry enabled track candidates to be processed in bunches. We conclude by looking at how Intel VTune and Advisor, together with simple test codes, played a role in identifying and resolving trouble spots that affected performance. The mkFit code is now part of the production software for CMS in LHC Run 3.
10:30 AM
Coffee Break
Coffee Break
10:30 AM - 11:00 AM
Room: 407 Jadwin Hall
11:00 AM
Closing Session
Closing Session
11:00 AM - 12:30 PM
Room: 407 Jadwin Hall