Precision phenomenology with heavy-flavour jets at the LHC
by
Jets are a staple of the research program at high-energy hadron colliders. As suitably defined sets of highly-energetic particles, they constitute a useful tool to establish a link between Quantum Chromodynamics (QCD) of quarks and gluons and the realm of actual strongly-interacting particles, baryons and mesons. Besides the general importance of jets for collider phenomenology, there is a growing interest in studying jet substructure in order to disentangle various QCD effects governing jet dynamics. Final states with jets identified to originate from heavy quarks play a vital role, for example, in understanding the process of heavy-quark fragmentation and the contents of protons at high energy. In this talk I will discuss fixed-order NNLO QCD phenomenology, comparisons thereof to data and infrared-safe flavoured jet algorithms, a non-trivial ingredient in defining useful collider observables.