Speaker
Description
Rigorous derivations of the approach of individual elements of large isolated systems to a state of thermal equilibrium, starting from arbitrary initial states, are exceedingly rare. We demonstrate how, through a mechanism of repeated scattering, an approach to equilibrium of this type actually occurs in a specific quantum system.
In particular, we consider an optical mode passing through a reservoir composed of a large number of sequentially-encountered modes of the same frequency, each of which it interacts with through a beam splitter. We analyze the dependence of the asymptotic state of this mode on the assumed stationary common initial state of the reservoir modes and on the transmittance τ = cos λ of the beam splitters. These results allow us to establish that at small λ such a mode will, starting from an arbitrary initial system state, approach a state of thermal equilibrium even when the reservoir modes are not themselves initially thermalized.
Keyword-1 | open quantum system |
---|---|
Keyword-2 | approach to equilibrium |