4–8 Nov 2024
LPNHE, Paris, France
Europe/Paris timezone

Taming perturbation theory in QCD with Normalizing Flows

5 Nov 2024, 09:20
20m
Salle Séminaires

Salle Séminaires

Speaker

Rikab Gambhir (MIT)

Description

When predicting the distribution of an observable, $p(x)$, in QCD, fixed-order (FO) perturbation theory can suffer from many undesirable artifacts, including large logarithms spoiling the expansion, unphysical divergences or negative bins, non-smooth kinks, and non-normalizability on physical $x$’s. However, one expects the "true" $p(x)$, as accessed by experiment, to be finite, positive, smooth, and normalized. We show how these conditions on $p(x)$ can be enforced exactly by parameterizing it using a Normalizing Flow (NF), which is matched onto FO calculations in regions of $x$ where perturbation theory is expected to converge, which results in a "more physical" $p(x)$ that still agrees with perturbation theory. This performs an effective resummation of higher-order terms in taming divergences, constrained at the lowest orders to the perturbative expansion by the choice of loss, of which the usual leading logarithmic resummation is one possibility. In principle, additional physical structure including scheme independence, RG evolution (including DGLAP), factorization, or other constraints can be incorporated into the NF.

Track Theory

Author

Co-author

Radha Mastandrea (University of California, Berkeley)

Presentation materials