Conveners
Foundation models
- Tianji Cai (SLAC National Accelerator Laboratory)
We propose a new approach to learning powerful jet representations directly from unlabelled data. The method employs a Particle Transformer to predict masked particle representations in a latent space, overcoming the need for discrete tokenization and enabling it to extend to arbitrary input features beyond the Lorentz four-vectors. We demonstrate the effectiveness and flexibility of this...
Machine learning has become an essential tool in jet physics. Due to their complex, high-dimensional nature, jets can be explored holistically by neural networks in ways that are not possible manually. However, innovations in all areas of jet physics are proceeding in parallel. We show that large machine learning models trained for a jet classification task can improve the accuracy, precision,...
OmniJet-alpha is the first cross-task foundation model for particle physics, demonstrating transfer learning between an unsupervised problem (jet generation) and a classic supervised task (jet tagging). While OmniJet-alpha is still at a prototype stage, the successful development of foundation models for physics data would represent a major breakthrough, as they have the potential to enhance...
This study proposes a new method for training foundation models designed explicitly for jet-related tasks. Like those seen in large language models, a foundation model is a pre-trained model that can be fine-tuned for various applications and is not limited to a specific task. Previous approaches often involve randomly masking inputs, such as tracks within a jet, and then predicting the masked...
This study introduces an innovative approach to analyzing unlabeled data in high-energy physics (HEP) through the application of self-supervised learning (SSL).
Faced with the increasing computational cost of producing high-quality labeled simulation samples at the CERN LHC, we propose leveraging large volumes of unlabeled data to overcome the limitations of supervised learning methods, which...