Quantum Technology Initiative Journal Club

Europe/Zurich
513/R-070 - Openlab Space (CERN)

513/R-070 - Openlab Space

CERN

15
Show room on map
Michele Grossi (CERN)
Description

Weekly Journal Club meetings organised in the framework of the CERN Quantum Technology Initiative (QTI) to present and discuss scientific papers in the field of quantum science and technology. The goal is to help researchers keep track of current findings and walk away with ideas for their own research. Some previous knowledge of quantum physics would be helpful, but is not required to follow the talks.

To propose a paper for discussion, contact: michele.grossi@cern.ch

Zoom Meeting ID
63779300431
Host
Michele Grossi
Alternative hosts
Su Yeon Chang, Matteo Robbiati
Passcode
55361000
Useful links
Join via phone
Zoom URL
    • 16:00 17:00
      CERN QTI Journal CLUB: TITLE
      Convener: Dr Michele Grossi (CERN)
      • 16:00
        Alexander Miessen (IBM) 40m

        TITLE: Benchmarking digital quantum simulations using quantum critical dynamics
        Link to the paper: https://arxiv.org/abs/2404.08053

        Abstract:
        The real-time simulation of large many-body quantum systems is a formidable task, that may only be achievable with a genuine quantum computational platform. Currently, quantum hardware with a number of qubits sufficient to make classical emulation challenging is available. This condition is necessary for the pursuit of a so-called quantum advantage, but it also makes verifying the results very difficult. In this manuscript, we flip the perspective and utilize known theoretical results about many-body quantum critical dynamics to benchmark quantum hardware and various error mitigation techniques on up to 133 qubits. In particular, we benchmark against known universal scaling laws in the Hamiltonian simulation of a time-dependent transverse field Ising Hamiltonian. Incorporating only basic error mitigation and suppression methods, our study shows reliable control up to a two-qubit gate depth of 28, featuring a maximum of 1396 two-qubit gates, before noise becomes prevalent. These results are transferable to applications such as Hamiltonian simulation, variational algorithms, optimization, or quantum machine learning. We demonstrate this on the example of digitized quantum annealing for optimization and identify an optimal working point in terms of both circuit depth and time step on a 133-site optimization problem.

        Speaker: Alexander Miessen (IBM)