Speaker
Description
Neutrino trident production of di-lepton pairs is well recognized as a sensitive probe of both electroweak physics and physics beyond the Standard Model. Although a rare process, it could be significantly boosted by such new physics, and it also allows the electroweak theory to be tested in a new regime. We demonstrate that the forward neutrino physics program at the Large Hadron Collider offers a promising opportunity to measure for the first time, dimuon neutrino tridents with a statistical significance exceeding $5\sigma$, improving on the previous claims at the $\sim 3\sigma$ level by the CHARM-II and CCFR collaborations while accounting for additional backgrounds later identified by the NuTeV collaboration. We present predictions for various proposed experiments and outline a specific experimental strategy to identify the signal and mitigate backgrounds, based on ``reverse tracking'' dimuon pairs in the FASER$\nu$2 detector. We also discuss prospects for constraining beyond Standard Model contributions to neutrino trident rates at high energies.